加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点.线段的中点.弦长.垂直问题.因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 查看更多

 

题目列表(包括答案和解析)

下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
x2
4
-y2=1
有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
y2
2
=1
的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
y2
2
=1
和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有
①②④
①②④
.(请写出所有正确的序号)

查看答案和解析>>

下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线有且只有一个公共点,这样的直线有3条;
④过双曲线的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有    .(请写出所有正确的序号)

查看答案和解析>>

下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,这样的直线有2条;
②过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线
x2
4
-y2=1
有且只有一个公共点,这样的直线有3条;
④过双曲线x2-
y2
2
=1
的右焦点作直线l交双曲线于A,B两点,若|AB|=4,则满足条件的直线l有3条;
⑤已知双曲线x2-
y2
2
=1
和点A(1,1),过点A能作一条直线l,使它与双曲线交于P,Q两点,且点A恰为线段PQ的中点.
其中说法正确的序号有______.(请写出所有正确的序号)

查看答案和解析>>

已知抛物线,过M(a,0)且斜率为1的直线与抛物线交于不同的两点A、B,

    (1)求a的取值范围;

    (2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

    分析:这是一道直线与圆锥曲线位置关系的问题,对于(1),可以设法得到关于a的不等式,通过解不等式求出a的范围,即“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2)首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值。

查看答案和解析>>

设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大

(1)求点P的轨迹方程。

(2)若直线与点P的轨迹相交于A、B两点,且,求的值。

(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。

【解析】本试题主要考查了轨迹方程的求解,利用直接法设点表示轨迹方程,并能利用所求的轨迹进行直线与圆锥曲线位置关系的运用。以及导数的几何意义的运用的综合试题。

 

查看答案和解析>>

难点磁场

解:由方程组6ec8aac122bd4f6e消去y,整理得(a2+b2)x2-2a2x+a2(1-b2)=0                      ①

则椭圆与直线l在第一象限内有两个不同的交点的充要条件是方程①在区间(0,1)内有两相异实根,令f(x)=(a2+b2)x2-2a2x+a2(1-b2),则有

6ec8aac122bd4f6e

同时满足上述四个条件的点P(a,b)的存在区域为下图所示的阴影部分:

6ec8aac122bd4f6e

歼灭难点训练

一、1.解析:由题意知A(1,1),B(m,6ec8aac122bd4f6e),C(4,2).

直线AC所在方程为x-3y+2=0,

B到该直线的距离为d=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

m∈(1,4),∴当6ec8aac122bd4f6e时,SABC有最大值,此时m=6ec8aac122bd4f6e.

答案:B

2.解析:考虑式子的几何意义,转化为求圆x2+y2=2上的点与双曲线xy=9上的点的距离的最小值.

答案:C

二、3.解析:设椭圆方程为6ec8aac122bd4f6e=1(ab>0),以OA为直径的圆:x2ax+y2=0,两式联立消y6ec8aac122bd4f6ex2ax+b2=0.即e2x2ax+b2=0,该方程有一解x2,一解为a,由韦达定理x2=6ec8aac122bd4f6ea,0<x2a,即0<6ec8aac122bd4f6eaa6ec8aac122bd4f6ee<1.

答案:6ec8aac122bd4f6ee<1

4.解析:由题意可设抛物线方程为x2=-ay,当x=6ec8aac122bd4f6e时,y=-6ec8aac122bd4f6e;当x=0.8时,y=-6ec8aac122bd4f6e.由题意知6ec8aac122bd4f6e≥3,即a2-12a-2.56≥0.解得a的最小整数为13.

答案:13

5.解析:设P(t,t2-1),Q(s,s2-1)

BPPQ,∴6ec8aac122bd4f6e=-1,

t2+(s-1)ts+1=0

tR,∴必须有Δ=(s-1)2+4(s-1)≥0.即s2+2s-3≥0,

解得s≤-3或s≥1.

答案:(-∞,-36ec8aac122bd4f6e6ec8aac122bd4f6e1,+∞)

三、6.解:设A(x1,y1),B(x2,y2).

6ec8aac122bd4f6e,得(1-k2x2+2kx-2=0,

又∵直线AB与双曲线左支交于AB两点,

故有6ec8aac122bd4f6e

解得-6ec8aac122bd4f6ek<-1

6ec8aac122bd4f6e

7.解:由抛物线y2=4x,得焦点F(1,0),准线lx=-1.

(1)设P(x,y),则B(2x-1,2y),椭圆中心O′,则|FO′|∶|BF|=e,又设点Bl的距离为d,则|BF|∶d=e,∴|FO′|∶|BF|=|BF|∶d,即(2x-2)2+(2y)2=2x(2x-2),化简得P点轨迹方程为y2=x-1(x>1).

(2)设Q(x,y),则|MQ|=6ec8aac122bd4f6e6ec8aac122bd4f6e?

(?)当m6ec8aac122bd4f6e≤1,即m6ec8aac122bd4f6e时,函数t=[x-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6e在(1,+∞)上递增,故t无最小值,亦即|MQ|无最小值.

(?)当m6ec8aac122bd4f6e>1,即m6ec8aac122bd4f6e时,函数t=[x2-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6ex=m6ec8aac122bd4f6e处有最小值m6ec8aac122bd4f6e,∴|MQ|min=6ec8aac122bd4f6e.

8.解:(1)以ABOD所在直线分别为x轴、y轴,O为原点,建立平面直角坐标系,?

∵|PA|+|PB|=|QA|+|QB|=26ec8aac122bd4f6e>|AB|=4.

∴曲线C为以原点为中心,AB为焦点的椭圆.

设其长半轴为a,短半轴为b,半焦距为c,则2a=26ec8aac122bd4f6e,∴a=6ec8aac122bd4f6e,c=2,b=1.

∴曲线C的方程为6ec8aac122bd4f6e+y2=1.

(2)设直线l的方程为y=kx+2,

代入6ec8aac122bd4f6e+y2=1,得(1+5k2)x2+20kx+15=0.

Δ=(20k)2-4×15(1+5k2)>0,得k26ec8aac122bd4f6e.由图可知6ec8aac122bd4f6e=λ

6ec8aac122bd4f6e

由韦达定理得6ec8aac122bd4f6e

x1=λx2代入得

6ec8aac122bd4f6e

两式相除得6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e                             ①

6ec8aac122bd4f6eMDN中间,∴λ<1                                                             ②

又∵当k不存在时,显然λ=6ec8aac122bd4f6e (此时直线ly轴重合).

 

 


同步练习册答案