点A到面BDC1的距离,且知AB=8,因此所求角的正弦值为 查看更多

 

题目列表(包括答案和解析)

正方体ABCD-A1B1C1D1 中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:
①AA1⊥MN;
②MN∥平面A1B1C1D1
③MN与A1C1异面;
④点B1到面BDC1的距离为
3
3

⑤若点M、N分别为线段AB1、BC1的中点,则由线MN与AB1确定的平面在正方体ABCD-A1B1C1D1 上的截面为等边三角形.
其中有可能成立的结论为 (  )

查看答案和解析>>

正方体ABCD-A1B1C1D1 中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:
①AA1⊥MN;
②MN∥平面A1B1C1D1
③MN与A1C1异面;
④点B1到面BDC1的距离为数学公式
⑤若点M、N分别为线段AB1、BC1的中点,则由线MN与AB1确定的平面在正方体ABCD-A1B1C1D1 上的截面为等边三角形.
其中有可能成立的结论为


  1. A.
    5
  2. B.
    4
  3. C.
    3
  4. D.
    2

查看答案和解析>>

正方体ABCD﹣A1B1C1D1 中,点M、N分别在线段AB1、BC1上,且AM=BN.以下结论:
①AA1⊥MN;
②MN∥平面A1B1C1D1
③MN与A1C1异面;
④点B1到面BDC1的距离为
⑤若点M、N分别为线段AB1、BC1的中点,则由线MN与AB1确定的平面在正方体ABCD﹣A1B1C1D1 上的截面为等边三角形.
其中有可能成立的结论为
[     ]
A.5
B.4
C.3
D.2
π

查看答案和解析>>

已知四棱锥P-ABCD,底面ABCD是∠A=60°,边长为a的菱形,又PD⊥底面ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(Ⅰ)证明:PB⊥AC;
(Ⅱ)证明:平面PMB⊥平面PAD;
(Ⅲ)求点A到面PMB的距离.

查看答案和解析>>

如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=
3

(1)求证:CD⊥平面ADS;
(2)求二面角A-SB-D的余弦值.
(3)求点A到面SBC的距离.

查看答案和解析>>


同步练习册答案