题目列表(包括答案和解析)
已知函数
在
处切线斜率为-1.
(I) 求
的解析式;
(Ⅱ)设函数
的定义域为
,若存在区间
,使得
在
上的值域也是
,则称区间
为函数
的“保值区间”
(ⅰ)证明:当
时,函数
不存在“保值区间”;
(ⅱ)函数
是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.
设二次函数
,函数
,且有
,![]()
(1)求函数
的解析式;
(2)是否存在实数k和p,使得
成立,若存在,求出k和p的值;若不存在,说明理由。
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分。
已知函数
在
处切线斜率为-1.
(I)求
的解析式;
(Ⅱ)设函数
的定义域为
,若存在区间
,使得
在
上的值域也是
,则称区间
为函数
的“保值区间”
(ⅰ)证明:当
时,函数
不存在“保值区间”;
(ⅱ)函数
是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不
存在,说明理由.
函数
,其图象在
处的切线方程为
.
(Ⅰ)求函数
的解析式;
(Ⅱ)若函数
的图象与
的图象有三个不同的交点,求实数
的取值范围;
(Ⅲ)是否存在点P,使得过点P的直线若能与曲线
围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P点的坐标;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com