(2) 设是椭圆上的一点.过点的直线交轴于点.交轴于点.若.求直线的斜率. 查看更多

 

题目列表(包括答案和解析)

已知椭圆上的一动点P到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.

(1)求椭圆C的方程;

(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点E,证明直线AE与x轴相交于定点Q;

(3)在(2)的条件下,过点Q的直线与椭圆C交于M,N两点,求·的取值

范围.

查看答案和解析>>

椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
F1M
F2M
=0

(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2

①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
3
3
)
、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点分别为F1(-c,0),F2(c,0),M是椭圆短轴的一个端点,且满足
F1M
F2M
=0,点N( 0,3 )到椭圆上的点的最远距离为5
2

(1)求椭圆C的方程
(2)设斜率为k(k≠0)的直线l与椭圆C相交于不同的两点A、B,Q为AB的中点,P(0,-
3
3
)
;问A、B两点能否关于过点P、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

已知是椭圆上一点,且点到椭圆的两个焦点距离之和为

(1)求椭圆方程;

(2)设为椭圆的左顶点,直线轴于点,过作斜率为的直线交椭圆于

两点,若,求实数的值.

 

查看答案和解析>>


同步练习册答案