.(1)证明:连结.在中// --2分 查看更多

 

题目列表(包括答案和解析)

(本题满分16分)如图,已知椭圆的长轴长为4,离心率为坐标原点,过的直线轴垂直.是椭圆上异于的任意一点,轴,为垂足,延长到点使得,连结延长交直线于点的中点.

(1)求椭圆的方程;w ww.ks 5u.co m

(2)证明点在以为直径的圆上;

(3)试判断直线与圆的位置关系.

    

查看答案和解析>>

 (选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.

A. 选修4-1:几何证明选讲

如图,是⊙的直径,是⊙上的两点

过点作⊙的切线FD的延长线于点.连结

于点.

    求证:.

 

B. 选修4-2:矩阵与变换

求矩阵的特征值及对应的特征向量.

 

C. 选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,直线的参数方程是为参数).

   (1)将曲线的极坐标方程化为直角坐标方程;

   (2)设直线轴的交点是是曲线上一动点,求的最大值.

 

D.选修4-5:不等式选讲

    设均为正数,且,求证

 

 

 

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

已知椭圆的右焦点为FA为短轴的一个端点,且的面积为1(其中为坐标原点).
(1)求椭圆的方程;
(2)若CD分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DPMQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

已知椭圆的右焦点为FA为短轴的一个端点,且的面积为1(其中为坐标原点).
(1)求椭圆的方程;
(2)若CD分别是椭圆长轴的左、右端点,动点M满足,连结CM,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DPMQ的交点,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案