19本题满分16分)已知二次函数同时满足以下两个条件:①不等式的解集有且只有一个元素,②在定义域内存在.使得不等式成立.设数列的前n项和. 查看更多

 

题目列表(包括答案和解析)

(本题满分16分)已知二次函数f (x) = x2 ??ax + a (x∈R)同时满足:①不等式 f (x) ≤ 0的解集有且只有一个元素;②在定义域内存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.设数列{an}的前 n 项和Sn = f (n).(1)求函数f (x)的表达式;(2)求数列{an}的通项公式;(3)在各项均不为零的数列{cn}中,若ci·ci+1 < 0,则称cici+1为这个数列{cn}一对变号项.令cn = 1 ?? (n为正整数),求数列{cn}的变号项的对数.

查看答案和解析>>

(本题满分12分) 已知二次函数满足,且关于的方程的两实数根分别在区间(-3,-2),(0,1)内。

(Ⅰ)求实数的取值范围;

(Ⅱ)若函数在区间(-1-1-)上具有单调性,求实数C的取值范围

 

查看答案和解析>>

(本题满分12分)

已知二次函数满足

(Ⅰ)求的解析式;

(Ⅱ)当时,不等式:恒成立,求实数的范围.

 

查看答案和解析>>

(.(本题满分12分)

已知二次函数和“伪二次函数” ),

(I)证明:只要,无论取何值,函数在定义域内不可能总为增函数;

(II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为

(i)求证:

(ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.

 

 

查看答案和解析>>

(本题满分12分)

已知二次函数满足

(Ⅰ)求的解析式;

(Ⅱ)当时,不等式:恒成立,求实数的范围.

 

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答题:本大题共6小题,共90分.

15.(1)设集合中的点为事件,  区域的面积为36,  区域的面积为18

(2)设点在集合为事件,  甲、乙两人各掷一次骰子所得的点数为36个,其中在集合中的点有21个,故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:为锐角          

由已知得:, 角为锐角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)证明:连接,取中点,连接

在等腰梯形中,,AB=AD,,E是BC的中点

都是等边三角形   

平面    平面

平面   

(2)证明:连接于点,连接

,且    四边形是平行四边形   是线段的中点

是线段的中点     

平面   平面

(3)与平面不垂直.

证明:假设平面,  则

平面  

平面    平面   

,这与矛盾

与平面不垂直.

18.(1)设椭圆的标准方程为

依题意得:,得   ∴  所以,椭圆的标准方程为

(2)设过点的直线方程为:,代入椭圆方程得;

  (*)

依题意得:,即 

得:,且方程的根为  

当点位于轴上方时,过点垂直的直线与轴交于点

直线的方程是:,  

所求圆即为以线段DE为直径的圆,故方程为:

同理可得:当点位于轴下方时,圆的方程为:

(3)设=得:,代入

(**)    要证=,即证

由方程组(**)可知方程组(1)成立,(2)显然成立.∴=

19..解(1)的解集有且只有一个元素,

当a=4时,函数上递减

故存在,使得不等式成立

当a=0时,函数上递增

故不存在,使得不等式成立

综上,得a=4,…………………………5分

(2)由(1)可知

当n=1时,

时,

(3)

+

               =+>

               >    

20解:(1)由的定义可知,(对所有实数)等价于

(对所有实数)这又等价于,即

对所有实数均成立.        (*)

  由于的最大值为

  故(*)等价于,即,这就是所求的充分必要条件

(2)分两种情形讨论

     (i)当时,由(1)知(对所有实数

则由易知

再由的单调性可知,

函数在区间上的单调增区间的长度

(参见示意图1)

(ii)时,不妨设,则,于是

   当时,有,从而

时,有

从而  ;

时,,及,由方程

      解得图象交点的横坐标为

                          ⑴

 

显然

这表明之间。由⑴易知

 

综上可知,在区间上,   (参见示意图2)

故由函数的单调性可知,在区间上的单调增区间的长度之和为,由于,即,得

          ⑵

故由⑴、⑵得 

综合(i)(ii)可知,在区间上的单调增区间的长度和为

 

 

 

 

                                    

 


同步练习册答案