(2)∵, ∴在(0,1]上恒成立,----8分 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

【解析】第一问利用的定义域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是

第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。

解: (I)的定义域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函数的单调递增区间是(1,3);单调递减区间是     ........4分

(II)若对任意不等式恒成立,

问题等价于,                   .........5分

由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,

故也是最小值点,所以;            ............6分

当b<1时,

时,

当b>2时,;             ............8分

问题等价于 ........11分

解得b<1 或 或    即,所以实数b的取值范围是 

 

查看答案和解析>>

(本小题满分14分)

已知三次函数图象上点(1,8)处的切线经过点(3,0),并且x=3处有极值.

(Ⅰ)求的解析式;

(Ⅱ)若当x∈(0,m)时,>0恒成立,求实数m的取值范围.

查看答案和解析>>

(本小题12分)已知函数f(x)=ax3x2-2x+c,过点,且在(-2,1)内单调递减,在[1,上单调递增。
(1)证明sinθ=1,并求f(x)的解析式。
(2)若对于任意的x1x2∈[mm+3](m≥0),不等式|f(x1)-f(x2)|≤恒成立。试问这样的m是否存在,若存在,请求出m的范围,若不存在,说明理由。
(3)已知数列{an}中,a1an+1f(an),求证:an+1>8·lnann∈N*)。

查看答案和解析>>

本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设函数是定义域为R的奇函数.

(1)求k值;

(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

 

 

查看答案和解析>>

本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数是定义域为R的奇函数.
(1)求k值;
(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;
(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

答案

 

 

 

 

 

 

 

 

 

 

二、填空题:(本大题共5个小题,每小题5分,共25分,)

11.    12.     13.    14.       15.

 

三、解答题:

 

 

 

 

 

 

 

 

 

 

 

 


同步练习册答案