题目列表(包括答案和解析)
若对任意
,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数.现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数z均成立.
今给出四个二元函数:
①
;②
③
;④
.
能够成为关于的
、
的广义“距离”的函数的所有序号是
.
若对任意
,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数.现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数z均成立.
今给出四个二元函数:①
;②
;③
;
④
.能够成为关于的
、
的广义“距离”的函数的所有序号是( )
A. ① B. ② C. ③ D. ④
若对任意
,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数. 现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数z均成立.
今给出四个二元函数:①
;②
③
;
④
.
能够成为关于的
、
的广义“距离”的函数的所有序号是
.
若对任意
,(
)有唯一确定的
与之对应,则称
为关于
的二元函数。现定义满足下列性质的二元函数
为关于实数
的广义“距离”:
(1)非负性:
,当且仅当
时取等号;
(2)对称性:
;
(3)三角形不等式:
对任意的实数
均成立.
今给出三个二元函数,请选出所有能够成为关于
的广义“距离”的序号:
①
;②
;③
._________________.
设函数![]()
解不等式
;(4分)
事实上:对于
有
成立,当且仅当
时取等号.由此结论证明:
.(6分)
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题:(本大题共5个小题,每小题5分,共25分,)
11. 12. 13. 14. 15.
三、解答题:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com