4 设m.n是两条不同的直线.α.β.γ是三个不同的平面 给出下列四个命题:①若m⊥α.n∥α.则m⊥n, ②若α⊥γ.β⊥γ.则α∥β, 查看更多

 

题目列表(包括答案和解析)

设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题:
①若m?α,αβ,则mβ
②若m、n?α,mβ,nβ,则αβ
③若m⊥α,m⊥β,n⊥α,则n⊥β
④若α⊥γ,β⊥γ,m⊥α,则m⊥β
其中,正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列几个命题:

①若m,n是异面直线,mα,m∥β,nβ,n∥α,则α∥β;

②若α⊥γ,β⊥γ,则α∥β;

③若α⊥β,α∩β=m,n⊥m,则n⊥β;

④符m⊥α,n∥β且α∥β,则m⊥n.

其中正确命题的个数为(    )

A.1个                B.2个               C.3个               D.4个

查看答案和解析>>

设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题:
①若m?α,α∥β,则m∥β
②若m、n?α,m∥β,n∥β,则α∥β
③若m⊥α,m⊥β,n⊥α,则n⊥β
④若α⊥γ,β⊥γ,m⊥α,则m⊥β
其中,正确命题的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

(2013•江门一模)设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题:
①若m?α,α∥β,则m∥β
②若m、n?α,m∥β,n∥β,则α∥β
③若m⊥α,m⊥β,n⊥α,则n⊥β
④若α⊥γ,β⊥γ,m⊥α,则m⊥β
其中,正确命题的个数是(  )

查看答案和解析>>

设l,m,n为三条不同的直线,α、β为两个不同的平面,下列命题中正确的个数是(   )

① 若l⊥α,m∥β,α⊥β则l⊥m ② 若则l⊥α

③ 若l∥m,m∥n,l⊥α,则n⊥α ④ 若l∥m,m⊥α,n⊥β,α∥β,则l∥n

A.1                B.2                C.3                D.4

 

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期为                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 时,函数的最大值为1,最小值 ………… 12分

 18、(I)解:设这箱产品被用户拒绝接收事件为A,被接收为,则由对立事件概率公式

   得:

即这箱产品被用户拒绝接收的概率为           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)连结B1CBCO,则OBC的中点,连结DO

∵在△AC中,OD均为中点,

ADO   …………………………2分

A平面BD,DO平面BD

A∥平面BD。…………………4分

(Ⅱ)设正三棱柱底面边长为2,则DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE

∵平面BC⊥平面ABC

DE⊥平面BC

EFBF,连结DF,则 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小为arctan………………12分

解法二:以AC的中D为原点建立坐标系,如图,

设| AD | = 1∵∠DC =60°∴| C| =

     则A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)连结CBOC的中点,连结DO,则                  O.       =

A平面BD

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       设平面BD的法向量为n = ( x , y , z ),则

       即  则有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       设平面BC的法向量为m = ( x′ ,y′,z′)

 

      令y = -1,解得m = (,-1,0)

      二面角DBC的余弦值为cos<n , m>=

∴二面角DBC的大小为arc cos          …………12分

20、解: 对函数求导得: ……………2分

(Ⅰ)当时,                   

解得

  解得

所以, 单调增区间为,

单调减区间为(-1,1)                                    ……………5分

(Ⅱ) 令,即,解得     ………… 6分

时,列表得:

 

x

1

+

0

0

+

极大值

极小值

……………8分

对于时,因为,所以

>0                                                    …………   10 分

对于时,由表可知函数在时取得最小值

所以,当时,                              

由题意,不等式恒成立,

所以得,解得                          ……………12分

21、解: (I)依题意知,点的轨迹是以点为焦点、直线为其相应准线,

离心率为的椭圆

设椭圆的长轴长为2a,短轴长为2b,焦距为2c,

,∴点在x轴上,且,则3,

解之得:,     

∴坐标原点为椭圆的对称中心 

∴动点M的轨迹方程为:                 …………    4分

(II)设,设直线的方程为(-2〈n〈2),代入

                     ………… 5分

, 

     …………  6分

,K(2,0),,

,

 

解得: (舍)      ∴ 直线EF在X轴上的截距为    …………8分

(Ⅲ)设,由知, 

直线的斜率为                …………    10分

时,;

时,,

时取“=”)或时取“=”),

                                

综上所述                         …………  12分  

22、(I)解:方程的两个根为

时,,所以

时,,所以

时,,所以时;

时,,所以.    …………  4分

(II)解:

.                        …………  8分

(III)证明:

所以

.                       …………  9分

时,

                                         …………  11分

同时,

.                                    …………  13分

综上,当时,.                     …………  14分