题目列表(包括答案和解析)
| 1 |
| 2 |
| 63 |
| 64 |
| 21 |
| 64 |
| 3 |
| lim |
| n→∞ |
如图,以
、
为顶点作正
,再以
和
的中点
为顶点作正
,再以
和
的中点
为顶点作正
,…,如此继续下去.有如下结论:
①所作的正三角形的边长构成公比为
的等比数列;
②每一个正三角形都有一个顶点在直线
(
)上;
③第六个正三角形的不在第五个正三角形边上的顶点
的坐标是
;
④第
个正三角形的不在第
个正三角形边上的顶点
的横坐标是
.
其中正确结论的序号是 (把你认为正确结论的序号都填上).
![]()
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)
现有变换公式
:
可把平面直角坐标系上的一点
变换到这一平面上的一点
.
(1)若椭圆
的中心为坐标原点,焦点在
轴上,且焦距为
,长轴顶点和短轴顶点间的距离为2. 求该椭圆
的标准方程,并求出其两个焦点
、
经变换公式
变换后得到的点
和
的坐标;
(2) 若曲线
上一点
经变换公式
变换后得到的点
与点
重合,则称点
是曲线
在变换
下的不动点. 求(1)中的椭圆
在变换
下的所有不动点的坐标;
(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换
下的不动点的存在情况和个数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com