函数在区间上有最小值-2.则实数a的值为 ( ) 查看更多

 

题目列表(包括答案和解析)

已知函数在区间上有最小值,则实数的值为  ( )

    A. 2               B.                C. -2                D. 4

查看答案和解析>>

函数f(x)=3x-x3在区间(a2-12,a)上有最小值,则实数a的取值范围是
(-1,2]
(-1,2]

查看答案和解析>>

若函数在给定区间M上存在正数,使得对于任意,有,且,则称为M上的级类增函数.给出3个命题:

①函数上的3级类增函数;

②函数上的1级类增函数;

③若函数上的级类增函数,

则实数的最小值为2.

以上命题中为真命题的是       .

查看答案和解析>>

函数y=x2+ax-1在区间[0,3]上有最小值-2,则实数a的值为

[  ]

A.2

B.

C.-2

D.4

查看答案和解析>>

设函数f(x)=lg(x2+ax-a-1),给出如下命题:
①函数f(x)必有最小值;
②若a=0时,则函数f(x)的值域是R;
③若a>0,且f(x)的定义域为[2,+∞),则函数f(x)有反函数;
④若函数f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞).
其中正确的命题序号是
 
.(将你认为正确的命题序号都填上)

查看答案和解析>>

1.   2. 1  3. 4  4.  5. 1,  6.  90° 7. 13

8.   9.   10. 4  11. y=2x  12. 9

13. D  14. B  15. D  16. C

17. 解: (1)y=2sin(2x-),  3’     最小正周期T=    5’

(2) ……8’

∴函数y的值域为[-1,2]                           ……………10’

18. (1)解  如图所示,在平面ABCD内,过CCPDE,交直线ADP,则∠ACP(或补角)为异面直线ACDE所成的角  

在△ACP中,

易得AC=aCP=DE=a,AP=a

由余弦定理得cosACP=

ACDE所成角为arccos 

另法(向量法)  如图建立坐标系,则

ACDE所成角为arccos 

 (2)解  ∵∠ADE=∠ADF,∴AD在平面BEDF内的射影在∠EDF的平分线上  如下图所示   

又∵BEDF为菱形,∴DB′为∠EDF的平分线,

故直线AD与平面BEDF所成的角为∠ADB

在Rt△BAD中,AD=aAB′=a,BD=a

则cosADB′=

AD与平面BEDF所成的角是arccos 

另法(向量法) 

∵∠ADE=∠ADF,∴AD在平面BEDF内的射影在∠EDF的平分线上  如下图所示   

又∵BEDF为菱形,∴DB′为∠EDF的平分线,

故直线AD与平面BEDF所成的角为∠ADB′,

如图建立坐标系,则

AD与平面BEDF所成的角是arccos 

19.  (1)解为等差数列,

     ……………………………………………………2分

解得 ……………………………4分

 ………………………………………………………………5分

 ……………………………………………………………6分

   (2) ………………………………………………6分

 …………8分

,知上单减,在上单增,

…………………………………………10分

∴当n = 5时,取最大值为 ………………12分

20. 解:(1)∵,∴,即

,∴

   (2),  

  当

时,

     当时,∵,∴这样的不存在。

     当,即时,,这样的不存在。

     综上得, .

21. 解:(1)Q为PN的中点且GQ⊥PN

       GQ为PN的中垂线|PG|=|GN|                                        

              ∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长,半焦距,∴短半轴长b=2,∴点G的轨迹方程是

   (2)因为,所以四边形OASB为平行四边形

       若存在l使得||=||,则四边形OASB为矩形

       若l的斜率不存在,直线l的方程为x=2,由

       矛盾,故l的斜率存在.   

       设l的方程为

      

          ①

      

          ②                      

       把①、②代入

∴存在直线使得四边形OASB的对角线相等.

 


同步练习册答案