5~90.518 查看更多

 

题目列表(包括答案和解析)

已知10只狗的血球体积及红血球的测量值如下:
x 45 42 46 48 42 35 58 40 39 50
y 6.53 6.30 9.25 7.50 6.99 5.90 9.49 6.20 6.55 7.72
x(血球体积,mm),y(血红球数,百万)
(1)画出上表的散点图;
(2)求出回归直线并且画出图形 
(3)回归直线必经过的一点是哪一点?

查看答案和解析>>

精英家教网为了加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取了50名学生的成绩进行统计.请你根据尚未完成的频率分布表,解答下列问题:

分组 频数 频率
第1组 60.5-70.5   0.26
第2组 70.5-80.5 15
第3组 80.5-90.5 18 0.36
第4组 90.5-100.5
合计 50 1
(1)完成频率分布表(直接写出结果),并作出频率分布直方图;
(2)若成绩在95.5分以上的学生为一等奖,试估计全校获一等奖的人数,现在从全校所有一等奖的同学中随机抽取2名同学代表学校参加决赛,某班共有2名同学荣获一等奖,求该班同学参加决赛的人数恰为1人的概率.

查看答案和解析>>

(2012•郑州二模)为加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,郑州市教育局举办了全市中学生创新知识竞赛.某校举行选拔赛,共有200名学生参加,为了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表,解答下列问题:
分组 频数 频率
60.5-70.5 a 0.26
70.5-80.5 15 c
80.5-90.5 18 0.36
90.5-100.5 b d
合计 50 e
(I)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,199,试写出第二组第一位学生的编号;
(II) 求出a,b,c,d,e的值(直接写出结果),并作出频率分布直方图;
(III)若成绩在85.5?95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

查看答案和解析>>

昆明的水资源极度缺乏,为了减少用水浪费,节约水资源,生活用水实行阶梯式水价,规定每户居民月实际用水量在10m3以内(含10m3),按3.45元/m3收取水费(含污水处理费,下同);实际用水量超过10m3的,具体标准为:用水量在区间(10,15](单位:m3)的部分,按5.90元/m3收取水费;用水量在区间(15,20](单位:m3)的部分,按7.14元/m3收取水费;用水量超过20m3的部分,按8.35元/m3收取水费.
(1)将某家庭今年八月的水费f(x)(单位:元)表示为该月用水量x(0≤x≤50,单位m3)的函数;
(2)某家庭今年八月的水费为166.50元,请计算该家庭八月的用水量.

查看答案和解析>>

某市举行了“高速公路免费政策”满意度测评,共有1万人参加了这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
组別 分组 频数 频率
1 [50,60) 60 0.12
2 [60,70> 120 0.24
3 [70,80) 180 0.36
4 [80,90) 130 c
5 [90,100] a 0.02
合计 b 1.00
(1)求出表中a,b,r的值;
(2)若分数在60分以上(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这 次满意度测评的人中随机抽取一人,求此人满意的概率;
(3)请你估计全市的平均分数.

查看答案和解析>>

一、填空题:

 1.;             2.;               3.;         4.;          5.

6.;      7.              8.;      9.21;                      10.

11.;12.;           13.;       14.

二、解答题:

15.(1)编号为016;                     ----------------------------3分

(2)

分组

频数

频率

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

18

0.36

90.5~100.5

14

0.28

合计

50

1

 

 

 

 

 

 

 

 

  ------------- ----------------------------8分

(3)在被抽到的学生中获二奖的人数是9+7=16人,

占样本的比例是,即获二等奖的概率约为32%,

所以获二等奖的人数估计为800×32%=256人。有   ------------------------13分

答:获二等奖的大约有256人。       -----------------------------------14分

 

16.解:(1) B=600,AC=1200 C=1200 A

∴ sinA-sinC cos(AC

sinA cosA[1-2sin2A-60°)]=

∴sin(A-60°)[1- sin(A-60°)]=0?      -------------------------4分

∴sin(A-60°)=0或sin(A-60°)= 又0°<A<120°,

A=60°或105°.???                          -------------------------8分

(2) 当A=60°时,acsinB×42sin360°=         ------------11分

A=105°时,?S×42?sin105°sin15°sin60°=  ----------------14分

17.解:(1)如四面体A1-ABC或四面体C1-ABC或四面体A1-ACD或四面体C1-ACD; ---4分

(2)如四面体B1-ABC或四面体D1-ACD;        -------------------------8分

(3)如四面体A-B1CD1(3分 );              -------------------------11分

设长方体的长、宽、高分别为,则 .---------14分

18.(1)如图,由光学几何知识可知,点关于的对称点在过点且倾斜角为的直线上。在中,椭圆长轴长,   ----4分

又椭圆的半焦距,∴

∴所求椭圆的方程为.             -----------------------------7分

   (2)路程最短即为上上的点到圆的切线长最短,由几何知识可知,应为过原点且与垂直的直线与的交点,这一点又与点关于对称,∴,故点的坐标为.                                 -------------------------15分

注:用代数方法求解同样分步给分!

19. 解:(1)若,对于正数的定义域为,但 的值域,故,不合要求.  --------------------------2分

,对于正数的定义域为. -----------------3分

由于此时

故函数的值域.    ------------------------------------6分

由题意,有,由于,所以.------------------8分

20.解:(1)依题意数列的通项公式是

故等式即为

同时有

两式相减可得 ------------------------------3分

可得数列的通项公式是

知数列是首项为1,公比为2的等比数列。 ---------------------------4分

(2)设等比数列的首项为,公比为,则,从而有:

          -----------------------------6分

要使是与无关的常数,必需,  ----------------------------8分

即①当等比数列的公比时,数列是等差数列,其通项公式是

②当等比数列的公比不是2时,数列不是等差数列.    ------------9分

(3)由(2)知,    ------------------------------------------10分

  --------------14分

    ----------------------------16分

 

 

  分

评卷人

17.(本题满分14分)

 

 

 

数学卷附加题参考答案

1.的中点,

 

2.解: (1)   ;           ---------------------------------------------------------4分

(2)矩阵的特征多项式为 

,    -----------------------------------------------------------------------5分

,当.  ----------------------------------------6分

,得.  -------------------------------------7分

                .--------------------10分

 

 

 

4.简证:(1)∵,∴,三个同向正值不等式相乘得.------------------------------5分

简解:(2)时原不等式仍然成立.

思路1:分类讨论证;

思路2:左边=.-------------------------------------10分

 

5.(1)记“该生考上大学”的事件为事件A,其对立事件为,则

       码---------------------------------------------------------------2分

       ----------------------------------------------4分

       (2)参加测试次数的可能取值为2,3,4,5,--------------------------------------5分

      

      

      

       +.  --------------------------------------------------8分

       故的分布列为:

2

3

4

5

P

       .       --------------------------------9分

       答:该生考上大学的概率为;所求数学期望是.----------------------------10分