设函数且f(x)的最小值为3.的解析式, 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)设函数f(x)=a .b,其中向量a =(m,cos2x),b =(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点.

(Ⅰ)求实数m的值;

(Ⅱ)求函数f(x)的最小值及此时x的值的集合.

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)

已知函数f(x)=2lnxg(x)=ax2+3x.

(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;

(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

 

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnxg(x)=ax2+3x.
(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

(本小题满分13分)(第一问8分,第二问5分)
已知函数f(x)=2lnxg(x)=ax2+3x.
(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

 (本小题满分13分)

某市物价局调查了某种治疗H1N1流感的常规药品在2009年每个月的批发价格和该药品在药店的销售价格,调查发现,该药品的批发价格按月份以12元/盒为中心价随某一正弦曲线上下波动,且3月份的批发价格最高为14元/盒,7月份的批发价格最低为10元/盒.该药品在药店的销售价格按月份以14元/盒为中心价随另一正弦曲线上下波动,且5月份的销售价格最高为16元/盒,9月份的销售价格最低为12元/盒.

(Ⅰ)求该药品每盒的批发价格f(x)和销售价格g(x)关于月份的函数解析式;

(Ⅱ)假设某药店每月初都购进这种药品p 盒,且当月售完,求该药店在2009年哪些月份是盈利的?说明你的理由.

查看答案和解析>>

一、选择题

ADBBD  ABBAD

二、填空题

11、        12、          13、C      14、21           15、          16、(-,0)

三、解答题

17、解:(1)    4分

f(x)的最小值为3

所以-a+=3,a=2

f(x)=-2sin(2x+)+5                                  6分

(2)因为(-)变为了(),所以h=,k=-5

由图象变换得=-2sin(2x-)            8分

由2kp+≤2x-≤2kp+    得kp+≤x≤kp+  所以单调增区间为

[kp+, kp+](k∈Z)       13分

18、解:(1)如图,在四棱锥中,

BCAD,从而点D到平面PBC间的距离等于点A

到平面PBC的距离.         2分

∵∠ABC=,∴AB⊥BC,

PA⊥底面ABCD,∴PA⊥BC

BC⊥平面  PAB,                 4分

∴平面PAB⊥平面PBC,交线为PB,

AAEPB,垂足为E,则AE⊥平面PBC,

∴AE的长等于点D到平面PBC的距离.

,∴

即点D到平面PBC的距离为.                 6分

(2)依题意依题意四棱锥P-ABCD的体积为

∴(BC+AD)AB×PA=,∴,                 8分

平面PDC在平面PAB上的射影为PAB,SPAB=,         10分

PC=,PD=,DC=,SPDC=a2,           12分

设平面PDC和平面PAB所成二面角为q,则cosq==

q=arccos.    13分

19、解:(1)从10 道不同的题目中不放回地随机抽取3次,每次只抽取1道题,抽法总数为只有第一次抽到艺术类数目的抽法总数为

                                   5分

(2)抽到体育类题目的可能取值为0,1,2,3则

    

的分布列为

0

1

2

3

 

P

10分

                         11分

从而有                   13分

20、解:(1)设在公共点处的切线相同

                         1分

由题意知       ,∴    3分

得,,或(舍去)

即有                                        5分

(2)设在公共点处的切线相同

由题意知    ,∴

得,,或(舍去)      7分

即有            8分

,则,于是

,即时,

,即时,                 11分

的最大值为,故的最大值为   13分

21、解:(1)∵且|PF1|+|PF2|=2a>|F1F2|(a>)

∴P的轨迹为以F1、F2为焦点的椭圆E,可设E:(其中b2=a2-5)    2分

在△PF1F2中,由余弦定理得

∴当且仅当| PF1 |=| PF2 |时,| PF1 |?| PF2 |取最大值,         4分

此时cos∠F1PF2取最小值

令=a2=9

∵c ∴b2=4故所求P的轨迹方程为           6分

(2)设N(st),M(xy),则由,可得(xy-3)=λ(st-3)

x=λs,y=3+λ(t-3)           7分

而M、N在动点P的轨迹上,故且

消去S得解得        10分

又| t |≤2,∴,解得,故λ的取值范围是[,5]      12分

22、解:(1)由,得,代入,得

整理,得,从而有

是首项为1,公差为1的等差数列,.          4分

(2), 

.                  8分

(3)∵

.

由(2)知

.     12分

 


同步练习册答案