18.袋中有大小相同的4个红球,2个白球,每次从中取出一个,每个球被取到的可能性相同.(1)若不放回地取3个球,求恰好取出两个红球的概率,(2)若每次取出后再放回.求第一次取出红球时.已取球次数ξ的概率分布和它的数学期望. 查看更多

 

题目列表(包括答案和解析)

袋中有大小相同的4个红球和6个白球,每次从中摸取一球,每个球被取到的可能性相同,现不放回地取3个球.

(1)求第三次取出红球的概率;

(2)在已知前两次取出的是白球的前提下,第三次取出红球的概率.

查看答案和解析>>

设袋中有大小相同的4个红球与2个白球,若从中有放回的依次取出一个球,记6次取球中取出红球的次数为ξ,则E(9ξ-1)=(    )。

查看答案和解析>>

口袋里有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回地摸球,每次取出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球.
(1)求在前三次摸球中,甲摸得红球的次数ξ的数学期望;
(2)设第n次由甲摸球的概率为an,试建立an与an-1(n≥2)的递推关系.

查看答案和解析>>

口袋里有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回地摸球,每次取出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球.
(1)求在前三次摸球中,甲摸得红球的次数ξ的数学期望;
(2)设第n次由甲摸球的概率为an,试建立an与an-1(n≥2)的递推关系.

查看答案和解析>>

口袋里有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球。

(1)求在前三次摸球中,甲摸得二次红球的概率。

(2)设第n次由甲摸球的概率为,第n+1次由甲摸球的概率为的关系式。

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其补角就是异面直线与BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即异面直线与BC所成的角的大小为      

 

(3)过点D作于E,连接CE,由三垂线定理知,故是二面角的平面角,

,∴E为的中点,∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小为   

20.解:(1)因,故可得直线方程为:

(2),用数学归纳法可证.

(3)

所以

21.解:(1)∵ 函数是R上的奇函数    ∴    ∴ ,由的任意性知∵ 函数处有极值,又

是关于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函数

极大值1

减函数

极小值

增函数

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范围是

22.(1)

(2)由

           ①

设C,CD中点为M,则有

,又A(0,-1)且

(此时)      ②

将②代入①得,即

综上可得

 

 


同步练习册答案