由①②解得b2=3.a2=4. 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.

【解析】利用圆心和半径表示圆的方程,首先

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)  

∴r=,

故所求圆的方程为:=2

解:法一:

设圆心为S,则KSA=1,∴SA的方程为:y+1=x-2,即y=x-3,  ………4分

和y=-2x联立解得x=1,y=-2,即圆心(1,-2)             ……………………8分

∴r=,                 ………………………10分

故所求圆的方程为:=2                   ………………………12分

法二:由条件设所求圆的方程为: 

 ,          ………………………6分

解得a=1,b=-2, =2                     ………………………10分

所求圆的方程为:=2             ………………………12分

其它方法相应给分

 

查看答案和解析>>

在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.

⑴ 若cosA=-,求cosC的值;  ⑵ 若AC=,BC=5,求△ABC的面积.

【解析】第一问中sinB=, sinA=

cosC=cos(180°-A-B)=-cos(A+B)                =sinA.sinB-cosA·cosB

×-(-

第二问中,由-2AB×BC×cosB得 10=+25-8AB

解得AB=5或AB=3综合得△ABC的面积为

解:⑴ sinB=, sinA=,………………2分

∴cosC=cos(180°-A-B)=-cos(A+B)                  ……………………3分

=sinA.sinB-cosA·cosB                            ……………………4分

×-(-                   ……………………6分

⑵ 由-2AB×BC×cosB得 10=+25-8AB   ………………7分

解得AB=5或AB=3,                               ……………………9分

若AB=5,则S△ABCAB×BC×sinB=×5×5×    ………………10分

若AB=3,则S△ABCAB×BC×sinB=×5×3×……………………11分

综合得△ABC的面积为

 

查看答案和解析>>

对于解方程x2-2x-3=0的下列步骤:

①设f(x)=x2-2x-3

②计算方程的判别式Δ=22+4×3=16>0

③作f(x)的图象

④将a=1,b=-2,c=-3代入求根公式

x=,得x1=3,x2=-1.

其中可作为解方程的算法的有效步骤为(  )

A.①②                            B.②③

C.②④                D.③④

 

查看答案和解析>>

在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

 (2)若圆与直线交于两点,且,求的值.

【解析】本试题主要是考查了直线与圆的位置关系的运用。

(1)曲线轴的交点为(0,1),

轴的交点为(3+2,0),(3-2,0) 故可设的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1.

(2)因为圆与直线交于两点,且。联立方程组得到结论。

 

查看答案和解析>>


同步练习册答案