因为恒有|OA|2+|OB|2<|AB|2,2(1+yA2)<4 yA2, yA2>1.即>1, 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xoy中,动点P到定点(0,
3
)距离与到定直线:y=
4
3
3
的距离之比为
3
2
.设动点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与交于A,B两点,当|
AB
|=
8
2
5
时,求实数k
的值.
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|.

查看答案和解析>>

在直角坐标系xOy中,点P到两点(0,-
3
),(0,
3
)
的距离之和为4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若
OA
OB
,求k的值;
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|

查看答案和解析>>

在直角坐标系xOy中,设动点P到直线
3
y-4=0
的距离为d1,到点(0,
3
)的距离为d2,且d1d2=2:
3
.又设点P的轨迹为C,直线l:y=kx+1与C交于A,B两点.
(Ⅰ)写出轨迹C的方程;
(Ⅱ)若
OA
OB
,求k的值;
(Ⅲ)若点A在第一象限,试问:当k>0时,是否恒有|
OA
|>|
OB
|

查看答案和解析>>

在平面直角坐标系xoy中,点P到两点F1(0,-
3
)
F2(0,
3
)
的距离之和等于4,设点P的轨迹为C,直线y=kx+1与曲线C交于A、B两点.
(1)求出曲线C的方程;
(2)若k=1,求△AOB的面积;
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|

查看答案和解析>>

在直角坐标系xOy中,点P到两点(0,-
3
),(0,
3
)
的距离之和为4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若
OA
OB
,求k的值;
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|

查看答案和解析>>


同步练习册答案