故x1+x2=因为恒有|OA|2+|OB|2<|AB|2,所以x21+y21+ x22+ y22<( x2-x1)2+(y2-y1)2,得x1x2+ y1y2<0恒成立.x1x2+ y1y2= x1x2+k2(x1-1) (x2-1)=(1+k2) x1x2-k2(x1+x2)+ k2 查看更多

 

题目列表(包括答案和解析)

如图,椭圆(a>b>0)的一个焦点是F(1,0),O为坐标原点。
(1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;
(2)设过点F的直线l交椭圆于A、B两点。若直线l绕点F任意转动,恒有|OA|2+|OB|2<|AB|2,求a的取值范围。

查看答案和解析>>

已知函数f(x)=
x3(x>0)
(3-a)x-a(x≤0)
,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若
f(x1)-f(x2)
x1-x2
>0恒成立,则a∈[0,3);  
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有
f(x1)+f(x)2
2
<f(
x1+x2
2
);  
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有
(2)(4)
(2)(4)
(只填相应的序号)

查看答案和解析>>

已知函数f(x)=
1
2
x2-ax+(a-1)lnx

(1)若1<a<2,求f(x)的单调区间;
(2)若1<a<5,证明对任意x1,x2∈(0,+∞),x1≠x2,恒有
f(x1)-f(x2)
x1-x2
>-1

查看答案和解析>>

(2012•山西模拟)已知函数f(x)=x-1-alnx(a∈R).
(1)若曲线y=f(x)在x=1处的切线方程为3x-y=3,求实数a的值;
(2)若f(x)的值域为[0,+∞),求a的值;
(3)若a<0,对任意x1,x2∈(0,1],且x1≠x2,恒有|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=
e-x-2,(x≤0)
2ax-1,(x>0)
(a是常数且a>0).对于下列命题:
①函数f(x)的最小值是-1;
②函数f(x)在R上是单调函数;
③若f(x)>0在[
1
2
,+∞)
上恒成立,则a的取值范围是a>1;
④对任意x1<0,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正确命题的序号是
 

查看答案和解析>>


同步练习册答案