题目列表(包括答案和解析)
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
(本题满分16分)已知椭圆
的离心率为
.
⑴若圆(x-2)2+(y-1)2=
与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆W方程;
⑵设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600.求
的值.
⑶在(1)的条件下,椭圆W的左右焦点分别为F1、 F2,点R在直线l:x-
y+8=0上.当∠F1RF2取最大值时,求
的值.
(本题满分16分)已知椭圆
的离心率为
.
⑴若圆(x-2)2+(y-1)2=
与椭圆相交于A、B两点且线段AB恰为圆的直径,求椭圆W方程;
⑵设L为过椭圆右焦点F的直线,交椭圆于M、N两点,且L的倾斜角为600.求
的值.
⑶在(1)的条件下,椭圆W的左右焦点分别为F1、 F2,点R在直线l:x-
y+8=0上.当∠F1RF2取最大值时,求
的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com