同理的方程为: 查看更多

 

题目列表(包括答案和解析)

精英家教网已知椭圆E的方程为:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点坐标为(1,0),点P(1,
3
2
)在椭圆E上.
(I)求椭圆E的方程;
(II)过椭圆E的顶点A作两条互相垂直的直线分别与椭圆E交于(不同于点A的)两点M,N.
问:直线MN是否一定经过x轴上一定点?若是,求出定点坐标,不是,说明理由.

查看答案和解析>>

已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)是否存在斜率为
1
2
的直线l与曲线C交于P、Q两不同点,使得
OP
OQ
=
5
2
(O为坐标原点),若存在,求出直线l的方程,否则,说明理由.

查看答案和解析>>

 已知椭圆E的方程为:的右焦点坐标为(1,0),点在椭圆E上。

   (I)求椭圆E的方程;

   (II)过椭圆E的顶点A作两条互相垂直的直线分别与椭圆E交于(不同于点A的)两点M,N。

        问:直线MN是否一定经过x轴上一定点?若是,求出定点坐标,不是,说明理由。

 


查看答案和解析>>

已知椭圆E的方程为:+=1(a>b>0)的右焦点坐标为(1,0),点P(1,)在椭圆E上.
(I)求椭圆E的方程;
(II)过椭圆E的顶点A作两条互相垂直的直线分别与椭圆E交于(不同于点A的)两点M,N.
问:直线MN是否一定经过x轴上一定点?若是,求出定点坐标,不是,说明理由.

查看答案和解析>>

某学校为高二年级开展第二外语选修课,要求每位同学最多可以选报两门课程.已知有75%的同学选报法语课,有60%的同学选报日语课.假设每个人对课程的选报是相互独立的,且各人的选报相互之间没有影响.
(1)任选1名同学,求其选报过第二外语的概率;
(2)理科:任选3名同学,记ξ为3人中选报过第二外语的人数,求ξ的分布列、期望和方差.
文科:任选3名同学,求3人中恰有1人选报过第二外语的概率.

查看答案和解析>>


同步练习册答案