(Ⅰ)解:设为上的点.则 查看更多

 

题目列表(包括答案和解析)

阅读:设Z点的坐标(a,b),r=|
OZ
|,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz.
根据上面所给出的概念,请解决以下问题:
(1)设z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;
(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)

查看答案和解析>>

命题:
①设
a
b
c
是互不共线的非零向量,则(
a
b
c
-(
c
a
b
=
0

②“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)单调递增”的充分不必要条件;
③已知α,β∈R,则“α=β”是“tanα=tanβ”的充要条件;
④函数f(x)=2x-x2的在(1,3)上至少一个零点;
x-1
(x-2)≥0
的解集为[2,+∞);
⑥函数y=x3在x=0处切线不存在.
其中正确命题的个数为(  )

查看答案和解析>>

命题:
①设
a
b
c
是互不共线的非零向量,则(
a
b
c
-(
c
a
b
=
0

②“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)单调递增”的充分不必要条件;
③已知α,β∈R,则“α=β”是“tanα=tanβ”的充要条件;
④函数f(x)=2x-x2的在(1,3)上至少一个零点;
x-1
(x-2)≥0
的解集为[2,+∞);
⑥函数y=x3在x=0处切线不存在.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

命题:
①设是互不共线的非零向量,则-=
②“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)单调递增”的充分不必要条件;
③已知α,β∈R,则“α=β”是“tanα=tanβ”的充要条件;
④函数f(x)=2x-x2的在(1,3)上至少一个零点;
的解集为[2,+∞);
⑥函数y=x3在x=0处切线不存在.
其中正确命题的个数为( )
A.1
B.2
C.3
D.4

查看答案和解析>>

阅读:设Z点的坐标(a,b),r=||,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz.
根据上面所给出的概念,请解决以下问题:
(1)设z=a+bi=r(cosθ+isinθ) (a、b∈R,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;
(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)

查看答案和解析>>


同步练习册答案