综上所述.当时.点的“相关弦 的弦长中存在最大值.且最大值为,当时.点的“相关弦 的弦长中不存在最大值. 查看更多

 

题目列表(包括答案和解析)

(08年湖南卷理)(本小题满分13分)

A、B是抛物线上的不同两点,弦AB(不平行于y轴)的垂直平分线与

x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当时,点

存在无穷多条“相关弦”.给定.

(I)证明:点的所有“相关弦”的中点的横坐标相同;

(II) 试问:点的“相关弦”的弦长中是否存在最大值?

若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(I)证明:点P(x0,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

(本小题满分13分)

A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与

x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点Px,0)

存在无穷多条“相关弦”.给定x0>2.

(I)证明:点Px0,0)的所有“相关弦”的中点的横坐标相同;

(II) 试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?

若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.

(I)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;

(II)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x0表示):若不存在,请说明理由.

查看答案和解析>>

若A、B是抛物线y2=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x>2.
(I)证明:点P(x,0)的所有“相关弦”中的中点的横坐标相同;
(II)试问:点P(x,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x表示):若不存在,请说明理由.

查看答案和解析>>


同步练习册答案