题目列表(包括答案和解析)
某港口海水的深度
(米)是时间
(时)(
)的函数,记为:![]()
已知某日海水深度的数据如下:
|
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
|
10.0 |
13.0 |
9.9 |
7.0 |
10.0 |
13.0 |
10.1 |
7.0 |
10.0 |
经长期观察,
的曲线可近似地看成函数
的图象
(I)试根据以上数据,求出函数
的振幅、最小正周期和表达式;
(II)一般情况下,船舶航行时,船底离海底的距离为
米或
米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为
米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)
【解析】第一问中利用三角函数的最小正周期为:
T=12 振幅:A=3,b=10,
第二问中,该船安全进出港,需满足:
即:
∴
又
,可解得结论为
或
得到。
某港口的水深
(米)是时间
(
,单位:小时)的函数,下面是每天时间与水深的关系表:
|
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
|
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
经过长期观测,
可近似的看成是函数
,(本小题满分14分)
(1)根据以上数据,求出
的解析式。
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,
∴A+b=13, -A+b=7 解得 A=3, b=10
第二问要想船舶安全,必须深度
,即![]()
∴
解得:
得到结论。
-1±
| ||
| 4 |
-1+
| ||
| 4 |
-1-
| ||
| 4 |
-1+
| ||
| 4 |
| 1 |
| x+a |
| 1 |
| x+a |
| 1 |
| x+a |
| 3 |
| ||||
| 2 |
| ||||
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com