(Ⅱ)由.得-------------------9分 查看更多

 

题目列表(包括答案和解析)

(9分)

  设数列的前项和为,且对任意正整数,点在直线上.

(1) 求数列的通项公式;

(2)是否存在实数,使得数列为等差数列?若存在,求出的值;若不存在,则说明理由.

查看答案和解析>>

(2012•梅州二模)一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,求月收入在[1500,2000)(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在[2000,3000)(元)的概率,采用随机模拟的方法:先由计算器算出0到9之间取整数值的随机数,我们用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的数字表示月收入不在[2000,3000)(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
据此估计,计算该社区3个居民中恰好有2个月收入在[2000,3000)(元)的概率.
(3)任意抽取该社区6个居民,用ξ表示月收入在(2000,3000)(元)的人数,求ξ的数学期望.

查看答案和解析>>

(2012•梅州二模)一个社会调查机构就某社区居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在[1500,2000)(元)段应抽出的人数;
(2)估计该社区居民月收人的平均数;
(3)为了估计该社区3个居民中恰有2个月收入在[2000,3000)(元)的概率,采用随机模拟的方法:先由计算器算出0到9之间取整数值的随机数,我们用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的数字表示月收入不在[2000,3000)(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
据此估计,计算该社区3个居民中恰好有2个月收入在[2000,3000)(元)的概率.

查看答案和解析>>

(本题满分12分)探究函数的最小值,并确定取得最小值时的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中值随值变化的特点,完成下列问题:

(1) 当时,在区间上递减,在区间       上递增;

所以,=       时, 取到最小值为        

(2) 由此可推断,当时,有最      值为        ,此时=     

(3) 证明: 函数在区间上递减;

(4) 若方程内有两个不相等的实数根,求实数的取值范围。

 

查看答案和解析>>

(本小题满分10分)把正整数列按如下规律排列:

  1,    

  2,3,

  4,5,6,7,

  8,9,10,11,12,13,14,15,

  ……

  问:(I)此表第n行的第一个数是多少?

     (II)此表第n行的各个数之和是多少?

是否存在,使得第行起的连续10行的所有数之和为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>


同步练习册答案