由②知..结合①得..所以只能取7.故.---8分 查看更多

 

题目列表(包括答案和解析)

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

如图,是△的重心,分别是边上的动点,且三点共线.

(1)设,将表示;

(2)设,证明:是定值;

(3)记△与△的面积分别为.求的取值范围.

(提示:

【解析】第一问中利用(1)

第二问中,由(1),得;①

另一方面,∵是△的重心,

不共线,∴由①、②,得

第三问中,

由点的定义知

时,时,.此时,均有

  时,.此时,均有

以下证明:,结合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

不共线,∴由①、②,得 

解之,得,∴(定值).

(3)

由点的定义知

时,时,.此时,均有

  时,.此时,均有

以下证明:.(法一)由(2)知

,∴

,∴

的取值范围

 

查看答案和解析>>

(1)若m,n∈R,由m2+n2≥2mn可得2(m2+n2)≥m2+n2+2mn,即有2(m2+n2)≥(m+n)2
(2)已知x>0,y>0,且x+y=1,利用(1)中不等式,求
x+
1
2
+
y+
1
2
的最大值并求出对应的x,y的值.

查看答案和解析>>

拓展探究题
(1)已知两个圆:①x2+y2=1;②x2+(y-3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程

(2)平面几何中有正确命题:“正三角形内任意一点到三边的距离之和等于定值,大小为边长的
3
2
倍”,请你写出此命题在立体几何中类似的真命题:
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
6
3

查看答案和解析>>

请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1

(Ⅱ)当整数n≥3时,求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)当整数n≥3时,证明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>


同步练习册答案