⑵当时..则.所以必要性成立------13分 查看更多

 

题目列表(包括答案和解析)

 函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____

在点(ak,ak2)处的切线方程为:时,解得

所以

 

查看答案和解析>>

有下述命题

①若,则函数内必有零点;

②当时,总存在,当时,总有

③函数是幂函数;

④若,则    其中真命题的个数是(    )

A、0            B、1            C、2            D、3

 

查看答案和解析>>

(本小题满分13分)

  已知点是函数的图像上的两点,若对于任意实数,当时,以为切点分别作函数的图像的切线,则两切线必平行,并且当时函数取得极小值1.[来源:]

(1)求函数的解析式;

(2)若是函数的图像上的一点,过作函数图像的切线,切线与轴和直线分别交于两点,直线轴交于点,求△ABC的面积的最大值.

 

查看答案和解析>>

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>

(本小题满分13分)

  已知点是函数的图像上的两点,若对于任意实数,当时,以为切点分别作函数的图像的切线,则两切线必平行,并且当时函数取得极小值1.

(1)求函数的解析式;

(2)若是函数的图像上的一点,过作函数图像的切线,切线与轴和直线分别交于两点,直线轴交于点,求△ABC的面积的最大值.

查看答案和解析>>


同步练习册答案