题目列表(包括答案和解析)
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.
有甲、乙两个箱子,甲箱
中有
张卡片,其中
张写有数字
,
张写有数字
,
张写有数字
;乙箱中也有
张卡片,其中
张写有数
字
,
张写有数字
,
张写有数字
.
(1)如果从甲、乙箱中各取一张卡片,设取出的
张卡片上数字之积为
,求
的
分布列及
的
数学期望;
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的
张卡片都写有
数字
的概率是多少?
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.
有甲、乙两个箱子,甲箱中有
张卡片,其中
张写有数字
,
张写有数字
,
张写有数字
;乙箱中也有
张卡片,其中
张写有数字
,
张写有数字
,
张写有数字
.
(1)如果从甲、乙箱中各取一张卡片,设取出的
张卡片上数字之积为
,求
的
分布列及
的数学期望;
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的
张卡片都写有
数字
的概率是多少?
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出
文字说明、证明过程或演算步骤。http://www.mathedu.cn
22. (本小题满分10分)
如图,在正四棱柱
中,
,点
是
的中点,点
在
上,设二面角
的大小为
。
(1)当
时,求
的长;
(2)当
时,求
的长。
[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。
A.
选修4-1:几何证明选讲
AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。
B. 选修4-2:矩阵与变换
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=
,N=
,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值。
C. 选修4-4:坐标系与参数方程
在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。
D. 选修4-5:不等式选讲
设a、b是非负实数,求证:
。
[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
一、填空题:(本大题共14小题,每小题5分,共70分.)
1.
2.1 3.-2 4.
5. (1)(2)
6. 4 7.甲 8.
9.9 10.
11.-2
12.
13.2 14. 2
二、解答题:(本大题共6小题,共90分.)
15.(本小题满分14分)
解:(1)∵
∴
…………………………………………5分
(2)∵
∴
…………………………………………7分

……………………………………9分



或
或7
………………………………14分
16.(本小题满分14分)
(1)证明:
E、P分别为AC、A′C的中点,
EP∥A′A,又A′A
平面AA′B,EP
平面AA′B
∴即EP∥平面A′FB …………………………………………5分
(2) 证明:∵BC⊥AC,EF⊥A′E,EF∥BC
∴BC⊥A′E,∴BC⊥平面A′EC
BC
平面A′BC
∴平面A′BC⊥平面A′EC …………………………………………9分
(3)证明:在△A′EC中,P为A′C的中点,∴EP⊥A′C,
在△A′AC中,EP∥A′A,∴A′A⊥A′C
由(2)知:BC⊥平面A′EC 又A′A
平面A′EC
∴BC⊥AA′
∴A′A⊥平面A′BC …………………………………………14分
17.(本小题满分15分)
解:(1)取弦的中点为M,连结OM
由平面几何知识,OM=1
…………………………………………3分
解得:
,
………………………………………5分
∵直线过F、B ,∴
则
…………………………………………6分
(2)设弦的中点为M,连结OM
则
……………………………………9分
解得
…………………………………………11分

∴
…………………………………………15分
(本题也可以利用特征三角形中的有关数据直接求得)
18.(本小题满分15分)
(1)延长BD、CE交于A,则AD=
,AE=2
则S△ADE= S△BDE= S△BCE=
∵S△APQ=
,∴
∴
…………………………………………7分
(2)

=
?
…………………………………………12分
当
,
即
,
…………………………………………15分
19.(本小题满分16分)
解(1)证:
由
得
在
上点
处的切线为
,即
又在
上点
处切线可计算得
,即
∴直线
与
、
都相切,且切于同一点(
) …………………5分
(2)
…………………7分
∴
在
上递增
∴当
时
……………10分
(3)
设上式为
,假设
取正实数,则
?
当
时,
,
递减;
当
,
,
递增. ……………………………………12分

∴不存在正整数
,使得
即
…………………………………………16分
20.(本小题满分16分)
解:(1)
,
,
对一切
恒成立
的最小值,又
,
…………………………………………4分
(2)
这5个数中成等比且公比
的三数只能为
只能是
,
…………………………8分





,
显然成立
……………………………………12分
当
时,
,


使不等式
成立的自然数n恰有4个的正整数p值为3
……………………………………………16分
泰州市2008~2009学年度第二学期期初联考
高三数学试题参考答案
附加题部分
21.(选做题)(从A,B,C,D四个中选做2个,每题10分,共20分.)
A.解:(1)
∴
∴AB=CD ……………………………………4分
(2)由相交弦定理得
2×1=(3+OP)(3-OP)
∴
,∴
……………………………………10分
B.解:依题设有:
………………………………………4分
令
,则
…………………………………………5分
…………………………………………7分




………………………………10分
C.解:以有点为原点,极轴为
轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)
,
,由
得
.
所以
.
即
为圆
的直角坐标方程. ……………………………………3分
同理
为圆
的直角坐标方程. ……………………………………6分
(2)由
相减得过交点的直线的直角坐标方程为
. …………………………10分
D.证明:(1)因为
所以
…………………………………………4分
(2)∵
…………………………………………6分
同理,
,
……………………………………8分
三式相加即得
……………………………10分
22.(必做题)(本小题满分10分)
解:(1)记“恰好选到1个曾经参加过数学研究性学习活动的同学”为事件的
, 则其概率为
…………………………………………4分
答:恰好选到1个曾经参加过数学研究性学习活动的同学的概率为
(2)随机变量
……………………5分
…………………………6分
………………………………7分
∴随机变量
的分布列为

2
3
4
P



∴
…………………………10分
23.(必做题)(本小题满分10分)
(1)
,
,
,
,
……………………………………3分
(2)平面BDD1的一个法向量为
设平面BFC1的法向量为
∴
取
得平面BFC1的一个法向量

∴所求的余弦值为
……………………………………6分
(3)设
(
)
,由
得
即
,



当
时,
当
时,∴
……………………………………10分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com