题目列表(包括答案和解析)
根据已知条件求曲线方程的一般步骤:
(1)________:________坐标系中,用有序实数对(x,y)表示所求曲线上________M的坐标;
(2)________:寻找并写出适合题意条件p的________的集合________;
(3)________:________,列出方程f(x,y)=0;
(4)________:化方程f(x,y)=0为最简式;
(5)________:证明以化简后的方程的解为坐标的点________.
一般情况下,当化简前后方程的解是________,步骤(5)可以省略不写,若有特殊情况如增根、失根时,可适当予以说明.另外,根据情况,也可省略________,直接列出________.
为了了解已有沙漠面积1000万公顷的某地区沙漠面积的变化情况,环保监测部门进入了连续4年的观察,并将每年年底的观察结果记录如表甲.根据这些数据还可绘制曲线图乙.由此预测到该地区沙漠的面积将继续扩大.
表甲
图乙
![]()
(1)如果不采取任何措施,那么到第m年底,该地区沙漠面积变为多少公倾?
(2)如果第5年底后,采取引水和植树造林等措施,使沙漠化扩大趋势得以减缓.第6年开始的每一年年底观察得该地区沙漠面积比上一年增加数y(公顷)分别为:a6,a7,a8,…,an,而a6,a7,a8,…,an还构成首项a6=32,公差d=-8的递减等差数列.当沙漠化扩大趋势停止后(即an=0),每年改造18万公顷沙漠,那么第n年底,该地区沙漠的面积能减少到980万公顷?
| t(h) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y(m) | 10.0 | 13.1 | 9.9 | 7.0 | 10.1 | 13.0 | 10.0 | 7.0 | 10.0 |
|
17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.
“function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.
莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.
当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.
随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.
综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.
你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?
1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?
2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com