已知如图.的外接圆的圆心为,, 查看更多

 

题目列表(包括答案和解析)

 已知如图,的外接圆的圆心为,,

   则等于             .     

 

 

查看答案和解析>>

已知如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC=,则等于

[  ]

A.

B.

C.2

D.3

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1(-4,0),F2(4,0),A(0,8),直线y=t(0<t<8)与线段AF1、AF2分别交于点P、Q.

(1)当t=3时,求以F1,F2为焦点,且过PQ中点的椭圆的标准方程;

(2)过点Q作直线QR∥AF1交F1F2于点R,记△PRF1的外接圆为圆C.

①求证:圆心C在定直线7x+4y+8=0上;

②圆C是否恒过异于点F1的一个定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

如图,已知椭圆的左、右焦点分别为F1,F2,其右准线l与x轴的交点为T,过椭圆的上顶点A作椭圆的右准线l的垂线,垂足为D,四边形AF1F2D为平行四边形.
(1)求椭圆的离心率;
(2)设线段F2D与椭圆交于点M,是否存在实数λ,使?若存在,求出实数λ的值;若不存在,请说明理由;
(3)若B是直线l上一动点,且△AF2B外接圆面积的最小值是4π,求椭圆方程.

查看答案和解析>>

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,其右准线l与x轴的交点为T,过椭圆的上顶点A作椭圆的右准线l的垂线,垂足为D,四边形AF1F2D为平行四边形.
(1)求椭圆的离心率;
(2)设线段F2D与椭圆交于点M,是否存在实数λ,使
TA
TM
?若存在,求出实数λ的值;若不存在,请说明理由;
(3)若B是直线l上一动点,且△AF2B外接圆面积的最小值是4π,求椭圆方程.

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

D

B

C

C

A

B

C

B

A

13.     14. 2   15.    16. ① ④

17.1) ……2分

     

                         ……4分 

,对称中心           ……6分

(2)                         ……8分

                                 ……10分

                   ……12分

18. 解:1)                     ……5分

(2)分布列:

0

1

2

3

4

评分:下面5个式子各1分,列表和期望计算2分(5+2=7分)

 

19. 解:(1)

   

    所以

   (2)设    ……8分

    当  

      

    当     

    所以,当

的最小值为……………………………… 12分

 

20.解法1:

(1)过S作,连

  

        ……4分

(2),∴是平行四边形

故平面

过A作,连

为平面

二面角平面角,而

应用等面积:

故题中二面角为                         ……4分

(3)∵距离为距离

又∵,∴平面,∴平面

∴平面平面,只需B作SE连线BO1,BO1

设线面角为

,故线面角为          ……4分

解法2:

(1)同上

(2)建立直角坐标系

平面SDC法向量为

设平面SAD法向量

,取

  ∴ 

∴二面角为

(3)设线面角为

 

21.(1)

时,        

                   

……                                 

             

     

                        

          

(3分)

时,

 

……

  (5分)

(6分)

(2)

又∵,∴

(12分)

 

22.(1)设

,∴  (3分)

所以P点的轨迹是以为焦点,实半轴长为1的双曲线的右支(除顶点)。(4分)

(2)设PE斜率为,PR斜率为

PE:    PR:

  …………(6分)

由PF和园相切得:,PR和园相切得:

故:两解

故有:

  ……(8分)

又∵,∴,∴  (11分)

   (14分)

 

 


同步练习册答案