精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,其右准线l与x轴的交点为T,过椭圆的上顶点A作椭圆的右准线l的垂线,垂足为D,四边形AF1F2D为平行四边形.
(1)求椭圆的离心率;
(2)设线段F2D与椭圆交于点M,是否存在实数λ,使
TA
TM
?若存在,求出实数λ的值;若不存在,请说明理由;
(3)若B是直线l上一动点,且△AF2B外接圆面积的最小值是4π,求椭圆方程.
分析:(1)由AD=F1F2得到a与c的关系
a2
c
=2c
进而得到e=
2
2

(2)得到a,b,c的关系且设出各点的坐标可得
TA
=(-2c,c)
,直线F2D的方程是x-y-c=0联立直线与椭圆的方程得M(
4
3
c,
1
3
c)
,进而得到
TA
=3
TM

(3)设圆心N的坐标为(n,n),圆过准线上一点B,则圆与准线有公共点所以
(n-c)2+n2
≥|n-2c|
可得n≤-3c或n≥c又r2=(n-c)2+n2=2(n-
c
2
)
2
+
c2
2
∈[c2,+∞)

(πr2min=c2π=4π,则c2=4.
解答:解:(1)依题意:AD=F1F2,即
a2
c
=2c

所以离心率e=
2
2

(2)由(Ⅰ)知:a=
2
c
,b=c,
故A(0,c),D(2c,c),F2(c,0),T(2c,0),
TA
=(-2c,c)

所以椭圆方程是
x2
2c2
+
y2
c2
=1
,即x2+2y2=2c2
直线F2D的方程是x-y-c=0
由,{
x2+2y2=2c2
x-y-c=0
解得:,{
x=0
y=-c
(舍去)或,{
x=
4
3
c
y=
1
3
c

M(
4
3
c,
1
3
c)

TM
=(-
2
3
c,
1
3
c)
,所以
TA
=3
TM

即存在λ=3使
TA
=3
TM
成立.
(3)由题可知圆心N在直线y=x上,设圆心N的坐标为(n,n),
因圆过准线上一点B,则圆与准线有公共点,
设圆心N到准线的距离为d,则NF2≥d,即
(n-c)2+n2
≥|n-2c|

解得:n≤-3c或n≥c,
r2=(n-c)2+n2=2(n-
c
2
)2+
c2
2
∈[c2,+∞)

由题可知,(πr2min=c2π=4π,则c2=4,
故椭圆的方程为
x2
8
+
y2
4
=1
点评:本题的重点是依向量为载体考查直线与圆锥曲线的相交问题,即联立直线椭圆的方程求解即可,还考查了焦点三角形面积的知识点,这些都是高考的重点内容.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点C(
3
2
3
2
)
且离心率为
6
3
,A、B是长轴的左右两顶点,P为椭圆上意一点(除A,B外),PD⊥x轴于D,若
PQ
QD
,λ∈(-1,0)

(1)试求椭圆的标准方程;
(2)P在C处时,若∠QAB=2∠PAB,试求过Q、A、D三点的圆的方程;
(3)若直线QB与AP交于点H,问是否存在λ,使得线段OH的长为定值,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)如图.已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的长轴为AB,过点B的直线l与x轴垂直,椭圆的离心率e=
3
2
,F1为椭圆的左焦点且
AF1
F1B
=1.
(I)求椭圆的标准方程;
(II)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ.连接AQ并延长交直线l于点M,N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,F1,F2分别是椭圆的左、右焦点,B为椭圆的上顶点且△BF1F2的周长为4+2
3

(1)求椭圆的方程;
(2)是否存在这样的直线使得直线l与椭圆交于M,N两点,且椭圆右焦点F2恰为△BMN的垂心?若存在,求出直线l的方程;若不存在,请说明由..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案