15.已知定义在R上的偶函数.且在[―1.0]上是增函数.给出下面关于:①是周期函数,②的图象关于直线对称,③在[0.1]上是增函数,④在[1.2]上是减函数,⑤其中正确的命题序号是 .(注:把你认为正确的命题序号都填上) 查看更多

 

题目列表(包括答案和解析)

已知定义在R上的偶函数f(x)满足f(x+2)•f(x)=1对于x∈R恒成立,且f(x)>0,则f(119)=
 

查看答案和解析>>

12、已知定义在R上的偶函数f(x),满足f(x)=-f(4-x),且当x∈[2,4)时,f(x)=log2(x-1),则f(2010)+f(2011)的值为(  )

查看答案和解析>>

已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(ax+1)≤f(x-2)对任意x∈[
1
2
,1]
都成立,则实数a的取值范围为(  )
A、[-2,0]
B、[-3,-1]
C、[-5,1]
D、[-2,1)

查看答案和解析>>

已知定义在R上的偶函数f(x)满足f(x+2)•f(x)=1对于x∈R恒成立,且f(x)>0,则f(2011)=
1
1

查看答案和解析>>

已知定义在R上的偶函数g(x)满足:当x≠0时,xg′(x)<0(其中g′(x)为函数g(x)的导函数);定义在R上的奇函数f(x)满足:f(x+2)=-f(x),在区间[0,1]上为单调递增函数,且函数y=f(x)在x=-5处的切线方程为y=-6.若关于x的不等式g[f(x)]≥g(a2-a+4)对x∈[6,10]恒成立,则a的取值范围是(  )

查看答案和解析>>

 

一、选择题:本大题共12个小题,每小题5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空题:本大题共4个小题,每小题4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小题满分12分)

    解:(I)共线

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小题满分12分)

解:根据题意得图02,其中BC=31千米,BD=20千米,CD=21千米

∠CAB=60˚.设∠ACD = α ,∠CDB = β .

.……9分

在△ACD中,由正弦定理得:

19.(本小题满分12分)

解:(1)连结OP,∵Q为切点,PQOQ,

由勾股定理有,

又由已知

即: 

化简得 …………3分

   (2)由,得

…………6分

故当时,线段PQ长取最小值 …………7分

   (3)设⊙P的半径为R,∵⊙P与⊙O有公共点,⊙O的半径为1,

即R且R

故当时,,此时b=―2a+3=

得半径最最小值时⊙P的方程为…………12分

20.(本小题满分12分)

解:(I)过G作GM//CD交CC1于M,交D1C于O。

∵G为DD1的中点,∴O为D1C的中点

从而GO

故四边形GFBO为平行四边形…………3分

∴GF//BO

又GF平面BCD1,BO平面BCD1

∴GF//平面BCD1。 …………5分

   (II)过A作AH⊥DE于H,

过H作HN⊥EC于N,连结AN。

∵DC⊥平面ADD1A1,∴CD⊥AH。

又∵AH⊥DE,∴AH⊥平面ECD。

∴AH⊥EC。 …………7分

又HN⊥EC

∴EC⊥平面AHN。

故AN⊥∴∠ANH为二面角A―CE―D的平面角 …………9分

在Rt△EAD中,∵AD=AE=1,∴AH=

在Rt△EAC中,∵EA=1,AC=

  …………12分

21.(本小题满分12分)

解:(I)

 

   (II)

   (III)令上是增函数

22.(本小题满分12分)

解:(I)

单调递增。 …………2分

,不等式无解;

所以  …………5分

   (II), …………6分

                         …………8分

因为对一切……10分

   (III)问题等价于证明

由(1)可知

                                                   …………12分

易得

当且仅当成立。

                                                 …………14分