(2)过作于.连结. 查看更多

 

题目列表(包括答案和解析)

设抛物线C:y2=2px,AB是过焦点F(
p
2
,0)
的弦,设A(x1,y1),B(x2,y2),O(0,0),l为准线,给出以下结论:
①4x1x2=p2;②以AB为直径的圆与准线l相离;③
1
|AF|
+
1
|BF|
=
1
p
;  ④设准线l与x轴交于点N,则FN平分∠ANB;⑤过准线l上任一点M作抛物线的切线,则切点的连线必过焦点.则以上结论正确的是
①④⑤
①④⑤
将正确结论的序号填上去)

查看答案和解析>>

设抛物线C:y2=2px,AB是过焦点的弦,设A(x1,y1),B(x2,y2),O(0,0),l为准线,给出以下结论:
①4x1x2=p2;②以AB为直径的圆与准线l相离;③;  ④设准线l与x轴交于点N,则FN平分∠ANB;⑤过准线l上任一点M作抛物线的切线,则切点的连线必过焦点.则以上结论正确的是    将正确结论的序号填上去)

查看答案和解析>>

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
x2
4
+y2=1

(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中相类似的结论,并证明你的结论.

查看答案和解析>>

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论.

查看答案和解析>>

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线中相类似的结论,并证明你的结论.

查看答案和解析>>


同步练习册答案