(2)当二面角――的大小为的值. 查看更多

 

题目列表(包括答案和解析)

边长为的菱形沿对角线折成大小等于的二面角.

分别为的中点,则下列说法中正确的有       

   ②与平面所成角为  ③线段的最大值是,最小值是

④当时,所成角等于

查看答案和解析>>

边长为的菱形沿对角线折成大小等于的二面角.

分别为的中点,则下列说法中正确的有       

   ②与平面所成角为  ③线段的最大值是,最小值是

④当时,所成角等于

查看答案和解析>>

如图所示,二面角α-CD-β的大小为θ,点A在平面α内,△ACD的面积为s,且CD=m,过A点的直线交平面β于B,AB⊥CD,且AB与平面β所成的角为30°,则当θ=
60°
60°
时,△BCD的面积取得最大值为
2S
2S

查看答案和解析>>

如图所示,二面角α-CD-β的大小为θ,点A在平面α内,△ACD的面积为s,且CD=m,过A点的直线交平面β于B,AB⊥CD,且AB与平面β所成的角为30°,则当θ=    时,△BCD的面积取得最大值为   

查看答案和解析>>

如图所示,二面角α-DC-β的大小为θ,A为α内一定点,且△ADC的面积为S,DC=a,过A作直线AB,使AB⊥CD且与平面β成角,当θ变化时,求△DBC面积的最大值.

查看答案和解析>>

一、选择题:

1C  2.D  3.D  4.C  5. B  6.C   7. C   8.C  9.  A 

1,3,5

二、填空:

13..y=54.8(1+x%)16   14.(0,)  15.   16.

三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤。

17.解(1)

(2)

1,3,5

18.解:(1)当时.…………2分

,连.

⊥面,知⊥面.…………3分

中点时,中点.

∵△为正三角形,

,∴…………5分

…………6分

   (2)过,连结,则

∴∠为二面角P―AC―B的平面角,

…………8分

    …………10分

……12分

19.解:(1)fx)=-a2x2+c+,……………(1分)

a,∴∈(0,1,………………………………………(2分)

x∈(0,1时,[fx)]max=c+,……………………………(3分)

fx)≤1,则[fx)]max=c+≤1,即c,……………(5分)

∴对任意x∈[0,1],总有fx)≤1成立时,可得c.……(6分)

(2)∵a,∴>0………………………(7分)

又抛物线开口向下,fx)=0的两根在[0,内,…………(8分)

…………(11分)

 

所求实数c的取值范围为

20.解:(1)当时,,不成等差数列。…(1分)

时,  ,

,  ∴,∴ …………(4分)

…………………….5分

(2)………………(6分)

……………………(7分)

………(8分)

,∴……………(10分)

 ∴的最小值为……………….12分

21.解:(1)

……………………2分

是增函数

是减函数……………………4分

……6分

(2)因为,所以

……………………8分

所以的图象在上有公共点,等价于…………10分

解得…………………12分

22解:(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|

∴P点轨迹为以A、F为焦点的椭圆…………………………3分

设方程为

………………………5分

(2)假设存在满足题意的直线l,其斜率存在,设为k,设