题目列表(包括答案和解析)
已知正项数列
的前n项和
满足:
,
(1)求数列
的通项
和前n项和
;
(2)求数列
的前n项和
;
(3)证明:不等式
对任意的
,
都成立.
【解析】第一问中,由于
所以![]()
两式作差
,然后得到![]()
从而
得到结论
第二问中,
利用裂项求和的思想得到结论。
第三问中,![]()
![]()
又![]()
结合放缩法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正项数列
,∴
∴
又n=1时,![]()
∴
∴数列
是以1为首项,2为公差的等差数列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
对任意的
,
都成立.
在
中,
是三角形的三内角,
是三内角对应的三边,已知
成等差数列,
成等比数列
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
【解析】第一问中利用依题意
且
,故![]()
第二问中,由题意
又由余弦定理知
![]()
,得到
,所以
,从而得到结论。
(1)依题意
且
,故
……………………6分
(2)由题意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
已知递增等差数列
满足:
,且
成等比数列.
(1)求数列
的通项公式
;
(2)若不等式
对任意
恒成立,试猜想出实数
的最小值,并证明.
【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列
公差为
,
由题意可知
,即
,解得d,得到通项公式,第二问中,不等式等价于
,利用当
时,
;当
时,
;而
,所以猜想,
的最小值为
然后加以证明即可。
解:(1)设数列
公差为
,由题意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等价于
,
当
时,
;当
时,
;
而
,所以猜想,
的最小值为
. …………8分
下证不等式
对任意
恒成立.
方法一:数学归纳法.
当
时,
,成立.
假设当
时,不等式
成立,
当
时,
,
…………10分
只要证
,只要证
,
只要证
,只要证
,
只要证
,显然成立.所以,对任意
,不等式
恒成立.…14分
方法二:单调性证明.
要证 ![]()
只要证
,
设数列
的通项公式
, …………10分
, …………12分
所以对
,都有
,可知数列
为单调递减数列.
而
,所以
恒成立,
故
的最小值为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com