[解析](1)因为点数最大为6.抛掷n次点数之和的最大值为6n.所以6×1>12.6×2>22.6×3>32.6×4>42.6×5>52.6×6 = 62.6×7<72.--.当n≥6时.点数之和不可能大于n2.即此时过关的概率为0.所以小强在这项游戏中最多能连过5关.(2)记第n次过关为事伯An.基本事件总数为6n. 查看更多

 

题目列表(包括答案和解析)

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

设A是如下形式的2行3列的数表,

a

b

c

d

e

f

满足性质P:a,b,c,d,e,f,且a+b+c+d+e+f=0

为A的第i行各数之和(i=1,2), 为A的第j列各数之和(j=1,2,3)记中的最小值。

(1)对如下表A,求的值

1

1

-0.8

0.1

-0.3

-1

(2)设数表A形如

1

1

-1-2d

d

d

-1

其中,求的最大值

(3)对所有满足性质P的2行3列的数表A,求的最大值。

【解析】(1)因为,所以

(2)

因为,所以

所以

当d=0时,取得最大值1

(3)任给满足性质P的数表A(如图所示)

a

b

c

d

e

f

任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表仍满足性质P,并且,因此,不妨设

得定义知,

从而

     

所以,,由(2)知,存在满足性质P的数表A使,故的最大值为1

【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力

 

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)   求证:A1C⊥平面BCDE;

(2)   若M是A1D的中点,求CM与平面A1BE所成角的大小;

(3)   线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

【解析】(1)∵DE∥BC∴又∵

(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,

设平面的法向量为,则,又,所以,令,则,所以

设CM与平面所成角为。因为

所以

所以CM与平面所成角为

 

查看答案和解析>>

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>


同步练习册答案