题目列表(包括答案和解析)
已知正项数列
的前n项和
满足:
,
(1)求数列
的通项
和前n项和
;
(2)求数列
的前n项和
;
(3)证明:不等式
对任意的
,
都成立.
【解析】第一问中,由于
所以![]()
两式作差
,然后得到![]()
从而
得到结论
第二问中,
利用裂项求和的思想得到结论。
第三问中,![]()
![]()
又![]()
结合放缩法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正项数列
,∴
∴
又n=1时,![]()
∴
∴数列
是以1为首项,2为公差的等差数列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
对任意的
,
都成立.
已知:
,当
时,
;
时,![]()
(1)求
的解析式( 6分 )
(2)c为何值时,
的解集为R. ( 6分 )
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
( 14分)已知函数
在一个周期内的部分函数图象如图所示.
(1)( 6分)函数
的解析式.
(2)( 4分)函数
的单调递增区间.
(3) ( 4分)函数
在区间
上的最大值和最小值.![]()
( 12分)已知:
、
、
是同一平面内的三个向量,其中
=(1,2)
(1)( 6分)若|
|
,且
,求
的坐标;
(2)( 6分)若|
|=
且
与
垂直,求
与
的夹角
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com