19.--------.. (2)减函数 .证明略 ..-------- 查看更多

 

题目列表(包括答案和解析)

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

已知:,当时,

时,

(1)求的解析式(  6分  )

(2)c为何值时,的解集为R. (  6分  )

查看答案和解析>>

中,,分别是角所对边的长,,且

(1)求的面积;

(2)若,求角C.

【解析】第一问中,由又∵的面积为

第二问中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C为内角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面积为           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C为内角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

( 14分)已知函数在一个周期内的部分函数图象如图所示.
(1)( 6分)函数的解析式.
(2)( 4分)函数的单调递增区间.
(3) ( 4分)函数在区间上的最大值和最小值.

查看答案和解析>>

( 12分)已知: 、是同一平面内的三个向量,其中 =(1,2)

(1)( 6分)若||,且,求的坐标;

(2)( 6分)若||=垂直,求的夹角.

 

 

查看答案和解析>>


同步练习册答案