题目列表(包括答案和解析)
规定max{f(x),g(x)}=
,若定义在R上的奇函数F(x)满足:当x>0时,F(x)=max{1-log2x,1+log2x}.
(1)求F(x)的解析式,并写出F(x)的单调区间;
(2)若方程F(x)=m有唯一实数解,求实数m的值;
(3)求t>0时,函数y=F(x)在x∈[t,2]上的值域.
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R都满足f(a·b)=af(b)+bf(a).
(1)求f(0),f(1)的值;
(2)判断f(x)的奇偶性,并证明你的结论;
(3)若
Sn表示数列{bn}的前n项和.试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)·g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,试说明理由.
已知定义在R上的函数f(x),满足条件:①f(x)+f(-x)=2;②对非零实数x,都有![]()
(1)求函数f(x)的解析式;
(2)设函数g(x)=
(x≥0),直线y=
n-x分别与函数y=g(x),y=g-1(x)交于An、Bn两点(其中n∈N*);设an=|AnBn|,Sn为数列{an}的前n项和,求证:当n≥2,
>2(
).
已知定义在R上的函数f(x),满足条件:(1)f(x)+f(-x)=2;(2)对非零实数x,都有2f(x)+f(
)=2x+
+3.
(1)求函数f(x)的解析式;
(2)设函数
直线
分别与函数g(x)的反函数y=g-1(x)交于A,B两点(其中n∈N*),设an=|AnBn|,sn为数列an的前n项和.求证:当n≥2时,总有
成立.
(
黄冈中学模拟)已知定义在R上的函数f(x),满足条件:①f(x)+f(-x)=2;②对非零实数x,都有(1)
求函数f(x)的解析式;(2)
设函数湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com