(A) (B) (C) (D)1 查看更多

 

题目列表(包括答案和解析)

已知向量,那么=    

    (A)         (B)        (C)     (D)1

 

查看答案和解析>>

(1)如图(a)(b)(c)(d)为四个平面图,数一数,每个平面图各有多少个顶点?多少条边?它们将平面围成了多少个区域?

 

顶点数

边数

区域数

(a)

 

 

 

(b)

 

 

 

(c)

 

 

 

(d)

 

 

 

 

(2)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?

(3)现已知某个平面图有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图有多少条边?

查看答案和解析>>

(A)(不等式选做题)
若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
(-∞,-3]∪[3,+∞)
(-∞,-3]∪[3,+∞)

(B)(几何证明选做题)
如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为
2
3
3
2
3
3

(C)(坐标系与参数方程选做题) 
在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或-8
2或-8

查看答案和解析>>

(A)(1)与(2)             (B)(2)与(3) 

(C)(3)与(4)             (D)(2)与(4)

 

查看答案和解析>>

(A)选修4-1:几何证明选讲
如图,⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心交⊙O于C,D两点,若PA=2,AB=4,PO=5,则⊙O的半径长为
13
13


(B)选修4-4:坐标系与参数方程
参数方程
x=
1
2
(et+e-t)
y=
1
2
(et-e-t)
中当t为参数时,化为普通方程为
x2-y2=1
x2-y2=1

(C)选修4-5:不等式选讲
不等式|x-2|-|x+1|≤a对于任意x∈R恒成立,则实数a的集合为
{a|a≥3}
{a|a≥3}

查看答案和解析>>

一、选择题:本小题共8小题,每小题5分,共40分.

题号

1

2

3

4

5

6

7

8

答案

B

D

B

B

A

C

B

C

二、填空题:本小题9―12题必答,13、14、15小题中选答2题,若全答只计前两题得分,共30分.

9.  35         10.            11.           12. 

13.           14.   10          15.

三、解答题:共80分.

16题(本题满分13分)

解:(1)要使f(x)有意义,必须,即

得f(x)的定义域为………………………………4分

 (2)因上,

    当时取得最大值………………………………………5分

    当时,,得f(x)的递减区间为

,递增区间为……9分

 (3)因f(x)的定义域为,关于原点不对称,所以f(x)为非奇非偶函数. ……………………………………………………………………13分

17题(本题满分13分)

解:(1)当且仅当时,方程组有唯一解.因的可能情况为三种情况………………………………3分

        而先后两次投掷骰子的总事件数是36种,所以方程组有唯一解的概率

        ……………………………………………………………………6分

     

 

 

(2)因为方程组只有正数解,所以两直线的交点在第一象限,由它们的图像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程组只有正数解的概率………………………………………………………………………13分

18题(本题满分14分)

解:(1)因,所以AD⊥平面CDE,ED是AE在平面CDE上的射影,∠AED=450,所以直线AE与平面CDE所成的角为450………………………………4分(2)解法一:如图,取AB、AD所在直线为x轴、y轴建立直角坐标系A―xyz.

………5分

,  

…………9分

 

 

 

,得,而是平面CDE的一个法向量,且平面CDE,

所以MN//平面CDE…………………………………………………………………………14分

解法二:设在翻转过程中,点M到平面CDE的距离为,点N到平面CDE的距离为,则,同理

所以,故MN//平面CDE……………………………………………………………14分

解法三:如图,过M作MQ//AD交ED于点Q,

过N作NP//AD交CD于点P,

连接MN和PQ…………………………………5分

 

 

 

 

 

 

设ㄓADE向上翻折的时间为t,则………………7分

,点D是CE的中点,得,四边形ABCD为正方形,ㄓADE为等腰三角形. ……………………10分

在RtㄓEMQ和RtㄓDNP中,ME=ND,∠MEQ=∠NDP=450,所以RtㄓEMQ≌RtㄓDNP,

所以MQ//NP且MQ=NP,的四边形MNPQ为平行四边形,所以MN//PQ,因平面CDE,

平面CDE,所以MN//平面CDE……………………………………………………14分

19题(本题满分14分)

解:(1)由已知得,解得:……………………2分

所求椭圆方程为………………………………………………4分

(2)因,得……………………………………7分

(3)因点即A(3,0),设直线PQ方程为………………8分

则由方程组,消去y得:

设点……………………10分

,得

,代入上式得

,故

解得:,所求直线PQ方程为……………………14分

20题(本题满分14分)

解:(1)函数f(x)的定义域为…………2分

①当时,>0,f(x)在上递增.………………………………4分

②当时,令解得:

,因(舍去),故在<0,f(x)递减;在上,>0,f(x)递增.…………8分

(2)由(1)知内递减,在内递增.

……………………………………11分

,又因

,得………………14分

21题(本题满分12分)

解:(1)

解法一:由,可得

………………………………2分

所以是首项为0,公差为1的等差数列.

所以……………………4分

解法二:因

…………………………………………………………

由此可猜想数列的通项公式为:…………2分

以下用数学归纳法证明:

①当n=1时,,等式成立;

②假设当n=k时,有成立,那么当n=k+1时,

     成立

所以,对于任意,都有成立……………………4分

(2)解:设……①

……②

时,①②得

…………6分

这时数列的前n项和

时,,这时数列的前n项和

…………………………………………8分

(3)证明:因,显然存在k=1,使得对任意

成立;…………………………………………9分

①当n=1时,等号成立;

②当时,因

               

               

所以,存在k=1,使得成立……………12分

 

 

 


同步练习册答案