解:由函数解得.∴ 原函数的反函数是. 查看更多

 

题目列表(包括答案和解析)

设D是由直线x=±π和y=±1所围成的矩形区域,E是D内函数y=cosx图象上方的点构成的区域,向D中随机投一点,则该点落入E(阴影部分)中的概率为(  )

查看答案和解析>>

设D是由直线x=±π和y=±1所围成的矩形区域,E是D内函数y=cosx图象上方的点构成的区域,向D中随机投一点,则该点落入E(阴影部分)中的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

由曲线数学公式以及直线y=1所围成的封闭图形的面积是________.

查看答案和解析>>


精英家教网
由2x+1>42-x,得2x+1>22(2-x)
解得x+1>2(2-x),即x>1,
所以a=2.
即方程(1-|2x-1|)=ax-1为(1-|2x-1|)=2x-1,
所以2-|2x-1|=2x
设y=2-|2x-1|,y=2x
分别在坐标系中作出两个函数的图象,由图象可知两函数的交点个数为2个.
即方程(1-|2x-1|)=ax-1实数根的个数为2个.
故选C.

查看答案和解析>>

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>


同步练习册答案