=t, ,∴g(a)=2. 查看更多

 

题目列表(包括答案和解析)

设m、t为实数,函数f(x)=
mx+t
x2+1
,f(x)的图象在点M(0,f(0))处的切线的斜率为1.
(1)求实数m的值;
(2)若对于任意x∈[-1,2],总存在t,使得不等式f(x)≤2t成立,求实数t的取值范围;设方程x2+2tx-1=0的两个实数根为a,b(a<b),若对于任意x∈[a,b],总存在x1、x2∈[a,b],使得f(x1)≤f(x)≤f(x2)恒成立,记g(t)=f(x2)-f(x1),当g(t)=
5
时,求实数t的值.

查看答案和解析>>

设m、t为实数,函数,f(x)的图象在点M(0,f(0))处的切线的斜率为1.
(1)求实数m的值;
(2)若对于任意x∈[﹣1,2],总存在t,使得不等式f(x)≤2t成立,求实数t的取值范围;设方程x2+2tx﹣1=0的两个实数根为a,b(a<b),若对于任意x∈[a,b],总存在x1、x2∈[a,b],使得f(x1)≤f(x)≤f(x2)恒成立,记g(t)=f(x2)﹣f(x1),当时,求实数t的值.

查看答案和解析>>

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函数f(x)定义为:对每个给定的实数x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)对所有实数x都成立,求a的取值范围;
(2)设t∈R,t>0,且f(0)=f(t).设函数f(x)在区间[0,t]上的单调递增区间的长度之和为d(闭区间[m,n]的长度定义为n-m),求
d
t

(3)设g(x)=x2-2bx+3.当a=2时,若对任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求实数b的取值范围.

查看答案和解析>>

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>


同步练习册答案