题目列表(包括答案和解析)
| x1+x2 |
| 2 |
| x1x2 |
| x1+x2+x3+…+xn |
| n |
| n | x1x2x3…xn |
| x1+x2+x3+…+xn |
| n |
| n | x1x2x3…xn |
| x1+x2 |
| 2 |
| x1x2 |
已知函数
=
.
(Ⅰ)当
时,求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范围.
【命题意图】本题主要考查含绝对值不等式的解法,是简单题.
【解析】(Ⅰ)当
时,
=
,
当
≤2时,由
≥3得
,解得
≤1;
当2<
<3时,
≥3,无解;
当
≥3时,由
≥3得
≥3,解得
≥8,
∴
≥3的解集为{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
当
∈[1,2]时,
=
=2,
∴
,有条件得
且
,即
,
故满足条件的
的取值范围为[-3,0]
设向量
,
,其中
,由不等式
恒成立,可以证明(柯西)不等式
(当且仅当
∥
,即
时等号成立),己知
,若
恒成立,利用可西不等式可求得实数
的取值范围是
设向量
,
,其中
,由不等式
恒成立,可以证明(柯西)不等式
(当且仅当
∥
,即
时等号成立),己知
,若
恒成立,利用可西不等式可求得实数
的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com