知识与技能:掌握椭圆的范围.对称性.顶点.掌握几何意义以及的相互关系.初步学习利用方程研究曲线性质的方法. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=
3
2
,BC=
1
2
.椭圆G以A、B为焦点且经过点D.
(Ⅰ)建立适当坐标系,求椭圆G的方程;
(Ⅱ)若点E满足
EC
=
1
2
AB
,问是否存在不平行AB的直线l与椭圆G交于M、N两点且|ME|=|NE|,若存在,求出直线l与AB夹角正切值的范围,若不存在,说明理由.

查看答案和解析>>

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(2,0),直线l:y=1,过M任作一条不与y轴重合的直线l1与椭圆相交于A、B两点,过AB的中点N作直线l2与y轴交于点P,D为N在直线l上的射影,若|ND|、
1
2
|AB|
、|MP|成等比数列,求直线l2的斜率的取值范围.

查看答案和解析>>

(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为

(1)设为参数,求椭圆的参数方程;

(2)点是椭圆上的动点,求的取值范围.

 

查看答案和解析>>

如图,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.椭圆G以A、B为焦点且经过点D.
(Ⅰ)建立适当坐标系,求椭圆G的方程;
(Ⅱ)若点E满足=,问是否存在不平行AB的直线l与椭圆G交于M、N两点且|ME|=|NE|,若存在,求出直线l与AB夹角正切值的范围,若不存在,说明理由.

查看答案和解析>>

如图,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.椭圆G以A、B为焦点且经过点D.
(Ⅰ)建立适当坐标系,求椭圆G的方程;
(Ⅱ)若点E满足=,问是否存在不平行AB的直线l与椭圆G交于M、N两点且|ME|=|NE|,若存在,求出直线l与AB夹角正切值的范围,若不存在,说明理由.

查看答案和解析>>


同步练习册答案