(2)长轴.短轴:线段.线段分别叫椭圆的长轴和短轴.它们的长分别等于2a和2b,(3)a.b的几何意义:a是长半轴的长.b是短半轴的长, 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知椭圆以坐标原点为中心,坐标轴为对称轴,且该椭圆以抛物线的焦点为其一个焦点,以双曲线的焦点为顶点。

(1)求椭圆的标准方程;

(2)已知点,且C、D分别为椭圆的上顶点和右顶点,点M是线段CD上的动点,求的取值范围。

 

查看答案和解析>>

已知椭圆以坐标原点为中心,坐标轴为对称轴,且椭圆以抛物线y2=16x的焦点为其一个焦点,以双曲线
x2
16
-
y2
9
=1
的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点P是线段CD上的动点,求
AP
BP
的取值范围.
(3)试问在圆x2+y2=a2上,是否存在一点M,使△F1MF2的面积S=b2(其中a为椭圆的半长轴长,b为椭圆的半短轴长,F1,F2为椭圆的两个焦点),若存在,求tan∠F1MF2的值,若不存在,请说明理由.

查看答案和解析>>

已知椭圆以坐标原点为中心,坐标轴为对称轴,且椭圆以抛物线y2=16x的焦点为其一个焦点,以双曲线的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点P是线段CD上的动点,求的取值范围.
(3)试问在圆x2+y2=a2上,是否存在一点M,使△F1MF2的面积S=b2(其中a为椭圆的半长轴长,b为椭圆的半短轴长,F1,F2为椭圆的两个焦点),若存在,求tan∠F1MF2的值,若不存在,请说明理由.

查看答案和解析>>

已知椭圆以坐标原点为中心,坐标轴为对称轴,且椭圆以抛物线y2=16x的焦点为其一个焦点,以双曲线的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点P是线段CD上的动点,求的取值范围.
(3)试问在圆x2+y2=a2上,是否存在一点M,使△F1MF2的面积S=b2(其中a为椭圆的半长轴长,b为椭圆的半短轴长,F1,F2为椭圆的两个焦点),若存在,求tan∠F1MF2的值,若不存在,请说明理由.

查看答案和解析>>

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)过F2作与直线AB垂直的直线,交椭圆于P、Q两点,当三角形PQF1面积为20
3
时,求此时椭圆的方程;
(3)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

查看答案和解析>>


同步练习册答案