*又在双曲线上 所以 即 故*可化为 查看更多

 

题目列表(包括答案和解析)

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

精英家教网如图,双曲线的中心在坐标原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.又已知该双曲线的离心率e=
5
2

(Ⅰ)求证:|
OA
|、|
AB
|、|
OB
|
依次成等差数列;
(Ⅱ)若F(
5
,0)
,求直线AB在双曲线上所截得的弦CD的长度.

查看答案和解析>>

给出问题:F1、F2是双曲线
x2
16
-
y2
20
=1的焦点,点P在双曲线上.若点P到焦点F1的距离等于9,求点P到焦点F2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.
该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内
 

查看答案和解析>>

如图,双曲线的中心在坐标原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.又已知该双曲线的离心率

(1)求证:依次成等差数列;

(2)若F(,0),求直线AB在双曲线上所截得的弦CD的长度.

 

查看答案和解析>>

在平面内,已知双曲线的焦点为,则是点在双曲线上的           (    )

A.充要条件B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件

 

查看答案和解析>>


同步练习册答案