过点作直线平行于.交平面于点, 查看更多

 

题目列表(包括答案和解析)

平面直角坐标系内的向量都可以用一有序实数对唯一表示,这使我们想到可以用向量作为解析几何的研究工具.如图,设直线l的倾斜角为α(α90°).在l上任取两个不同的点,不妨设向量的方向是向上的,那么向量的坐标是().过原点作向量,则点P的坐标是(),而且直线OP的倾斜角也是α.根据正切函数的定义得

这就是《数学2》中已经得到的斜率公式.上述推导过程比《数学2》中的推导简捷.你能用向量作为工具讨论一下直线的有关问题吗?例如:

(1)过点,平行于向量的直线方程;

(2)向量(AB)与直线的关系;

(3)设直线的方程分别是

那么,的条件各是什么?如果它们相交,如何得到它们的夹角公式?

(4)到直线的距离公式如何推导?

查看答案和解析>>

在平面直角坐标系中,已知抛物线y2=2px(p>0),过定点A(p,0)作直线交该抛物线于M、N两点.
(I)求弦长|MN|的最小值;
(II)是否存在平行于y轴的直线l,使得l被以AM为直径的圆所截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)以OA,OB为邻边作平行四边形OADB,是否存在常数k,使得直线OD与PQ平行?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系中,已知双曲线.

 (1)设F是C的左焦点,M是C右支上一点. 若|MF|=2,求过M点的坐标;(5分)

(2)过C的左顶点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的

面积;(5分)

    (3)设斜率为的直线l2交C于P、Q两点,若l与圆相切,

求证:OP⊥OQ;(6分)

 

查看答案和解析>>

在平面直角坐标系xOy中,已知双曲线C:2x2-y2=1。
(1)设F是C的左焦点,M是C右支上一点,若,求点M的坐标;
(2)过C的左焦点作C的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;
(3)设斜率为k()的直线l交C于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ。

查看答案和解析>>


同步练习册答案