题目列表(包括答案和解析)
设函数f(x)=lnx-px+1
(1)当P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围
(2)证明:
(n∈N
,n≥2)
(12分)设函数f(x)=lnx-px+1(1)当
P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围(2)证明:
(n∈N
,n≥2)
利用单位圆中的三角函数线解不等式(组):
(1)3tanα+
>0;
(2)
.
(本小题满分14分)
(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;
=
;
(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论
(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆
+
=1(a>b>0)提出一个有深度的结论,并证明之.
如图所示,在直角坐标系xOy中,点P
到抛物线C:y2=2px(p>0)的准线的距离为
.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.
![]()
(1)求p,t的值;
(2)求△ABP面积的最大值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com