解:设P(x,y)是直线上任意一点.有向线段P0P的数量为t.则x-x0=tcosα.y-y0=tsinα,所以参数方程为.t为参数.t的几何意义是定点P0到动点P的数量思考:直线l上有两点P1.P2.对应的参数分别为t1,t2,则|P1P2|= (|t2-t1|) 查看更多

 

题目列表(包括答案和解析)

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积数学公式后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为数学公式,求侧棱长”;也可以是“若正四棱锥的体积为数学公式,求所有侧面面积之和的最小值”.
现有正确命题:过点数学公式的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16
3
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
16
3
,求侧棱长”;也可以是“若正四棱锥的体积为
16
3
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
p
2
,0)
的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.

查看答案和解析>>

已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;

【解析】(1)离心率为=,椭圆的短半轴为半径的圆与直线x-y+=0相切,b==,解得a2=4,b2=3;(Ⅱ)直线PB的方程为y=k(x-4)

 

查看答案和解析>>

设函数y=数学公式的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>


同步练习册答案