=4+1-2×2×1×cos120°=7. 查看更多

 

题目列表(包括答案和解析)

在计算“1×2+2×3+…+n(n+1)”时,有如下方法:
先改写第k项:k(k+1)=
1
3
[k(k+1)(k+2)-(k-1)k(K+1)],
由此得:1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),…,
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)],
相加得:1×2+2×3+…+n(n+1)=
1
3
n
(n+1)(n+2).
类比上述方法,请你计算“1×3+2×4+…+n(n+2)”,其结果写成关于n的一次因式的积的形式为:
1
6
n(n+1)(2n+7)
1
6
n(n+1)(2n+7)

查看答案和解析>>

集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,所有这些乘积的和记为f(n),如:
f(3)=1×2+1×3+2×3=
1
2
[62-(12+22+32)]=11,
f(4)=1×2+1×3+1×4+2×3+2×4+3×4
=
1
2
[102-(12+22+32+42)]=35
f(5)=1×2+1×3+1×4+1×5+…4×5
=
1
2
[152-(12+22+32+42+52)]=85.

则f(7)=
322
322
.(写出计算结果)

查看答案和解析>>

为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6   1.2   2.7   1.5    2.8   1.8   2.2   2.3    3.2   3.5
2.5   2.6   1.2   2.7    1.5   2.9   3.0   3.1    2.3   2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2    1.7     1.9     0.8     0.9    2.4     1.2     2.6     1.3     1.4
1.6    0.5     1.8     0.6     2.1    1.1     2.5     1.2     2.7     0.5
(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?
(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

查看答案和解析>>

将n2个正整数1,2,3,…,n2填入n×n方格中,使其每行、每列、每条对角线上的数的和相等,这个正方形叫做n阶幻方.记f(n)为n阶幻方对角线的和,如右图就是一个3阶幻方,可知f(3)=15,,则f(5)=(  )
8 3 4
1 5 9
6 7 2

查看答案和解析>>

将n2个正整数1,2,3,…,n2填入n×n方格中,使其每行、每列、每条对角线上的数的和都相等,这个正方形叫做n阶幻方.记f(n)为n阶幻方对角线上数的和,如右图就是一个3阶幻方,可知f(3)=15.已知将等差数列:3,4,5,…前16项填入4×4方格中,可得到一个4阶幻方,则其对角线上数的和f(4)等于(  )
8 3 4
1 5 9
6 7 2
A、36B、42C、34D、44

查看答案和解析>>


同步练习册答案