ξ可能的取值为0.1.2. 查看更多

 

题目列表(包括答案和解析)

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合数学公式,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

已知集合M={1,2,3,…,n}(n∈N*),若集合,且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2{﹣1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(III)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(Ⅰ)当a2=-1时,求λ及a3的值;
(Ⅱ)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(Ⅲ)求λ的取值范围,使得存在正整数m,当n>m时总有an<0.

查看答案和解析>>


同步练习册答案