题目列表(包括答案和解析)
在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的
、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.
(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.
【解析】(Ⅰ)根据极坐标与普通方程的互化,将直线l:ρ(2cosθ-sinθ)=6化为普通方程,C2的方程为
,化为普通方程;(Ⅱ)利用点到直线的距离公式表示出距离,求最值.
(本小题满分14分)在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(I)若
,
,
,求方程
在区间
内的解集;
(II)若点
是曲线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(III)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.【说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.】
| 3 |
| 2 |
| 9 |
| 8 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com