题目列表(包括答案和解析)
如图直线l的解析式为y=-x+4, 它与x轴、y轴分相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)
(1)求A、B两点的坐标;
(2)用含t的代数式表示△MON的面积S1;
(3)以MN为对角线作矩形OMPN,记 △MPN和△OAB重合部分的面积为S2;
?当2<t≤4时,试探究S2 与之间的函数关系;
在直线m的运动过程中,当t为何值时,S2 为△OAB的面积的
?
![]()
如图直线l的解析式为y=-x+4, 它与x轴、y轴分相交于A、B两点
,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)
(1)求A、B两点的坐标;
(2)用含t的代数式表示△MON的面积S1;
(3)以MN为对角线作矩形OMPN,记 △MPN和△OAB重合部分的面积为S2 ;
?当2<t≤4时,试探究S2与t之间的函数关系; ?在直线m的运动过程中,当t为何值时,S2 为△OAB的面积的![]()
?
如图直线l的解析式为y=-x+4,它与x轴、y轴分相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)
(1)求A、B两点的坐标;
(2)用含t的代数式表示△MON的面积S1;
(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;
①当2<t≤4时,试探究S2与之间的函数关系;
②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的
?
如图,直线y=
和x轴、y轴的交点分别为B,C.点A的坐标是(-2,0)
(1)试说明△ABC是等腰三角形;
(2)动点M从点A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度,当其中一个动点到达终点时,它们都停止运动,设点运动t秒时,△MON的面积为s.
①求s与t的函数关系式;
②当点M在线段OB上运动时,是否存在s=4的情形?若存在,求出对应的t值;若不存在,说明理由;
③在运动过程中,当△MON为直角三角形时,求t的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com